

Research Article

Anti-Invariant Submanifolds of S-Manifold

C.S. Bagewadi¹, Venkatesha.S² Research Guide& Reted Professor¹, Research Scholar² Department of Mathematics Kuvempu University, Karnataka India

Abstract:

The object of the present paper is to study anti-invariant submanifolds M of S- manifold \overline{M} . It is shown that if M is totally umbilical then M is totally geodesic. Also results have been obtained connecting linear span L({ $\{\xi_{\alpha}\}$); totally geodesicty and anti-invariance of M. Also we find the necessary and sufficient condition for anti-invariant submanifolds of S-manifold to be T-invariant and antiinvariant and condition for integrability of the distribution D. AMS Subject Classification: 53C15, 53C20, 53C50.

Key Words: Anti-invariant submanifold, S- manifold, T-invariant, Totally geodesic, Totally umbilical, Integrable condition.

INTRODUCTION 1.

In 1963, Yano [12] introduced the notion of ϕ -structure on a C^{∞} (2n+s)-dimensional manifold \overline{M} as a non-vanishing tensor field ϕ of type (1,1) on \overline{M} which satisfies $\phi 3 + \phi = 0$ and has constant rank r=2n. The almost complex (s=0) and almost contact (s=1) are examples of ϕ -structures. In 1970, S.I.Goldberg and K.Yano [29] defined globally framed ϕ -structures for which the subbundle ker ϕ is parallelizable. Then there exists a global frame { ξ_1, ξ_s } for the subbundle ker ϕ , (the vector fields $\xi_1,...,\xi_s$ are called the structure vector 1 with dual 1-forms, η_1 ,..., η_s such that $g(\phi X, \phi Y) = g(X, Y) \sum_{\alpha=1}^{s} \eta_{\alpha}(X) \eta_{\alpha}(Y) \quad \text{for any vector fields X,Y in } \overline{M} \quad \text{, and}$ then the structure is called a metric ϕ -structure. A wider class of globally framed ϕ -manifolds was introduced by [3] according to the following definition; a metric ϕ -structure is said to be Kstructure if the fundamental 2-form Φ given by $\Phi(X, Y) = g(X, Y)$ ϕY) for any vector fields X and Y on M is closed and normality condition holds, that is $[\phi, \phi] + 2\sum_{\alpha=1}^{s} d\eta_{\alpha} \otimes \xi_{\alpha} = 0$, where $[\phi, \phi_{-}]$ denotes the Nijenhuis tensor of $\phi.$ A K-manifold is called an S-manifold if $d\eta_{\alpha} = \Phi$ for all $\alpha = 1, \dots, s$. If (s=1), an Smanifold is a Sasakian manifold. Furthermore, S-manifolds have been studied by several authors (see, for examples, [[1], [2] [6], [7], [8], [29]). The research work on the geometry of invariant submanifols of contact and complex manifolds is carried out by M.Kon [25] in 1973, C.S.Bagewadi [30] in 1982, Yano and Kon [35] in 1984, and in 2016 ([10], [11], [15]) and other authors ([9], [25], [26]) etc. Also the study of geometry of anti-invariant submanifolds is carried out by ([13],[16],[17],[18], [19], [27] ,[28], [32], [33], [34]) in various contact manifolds. Motivated by the studies of the above authors, we study anti-invariant submanifolds of S-manifolds. The paper is organised as follows: the section 1 consists of preliminaries of S-manifolds and section 2 contains the results as stated in abstract.

A (2n+s)-dimensional differentiable manifold \overline{M} is 2. called a metric ϕ -manifold if there exists a (1,1) type tensor field

 ϕ , s vector fields ξ_1,\ldots,ξ_s called structure vector fields s-1-forms η_1, \dots, η_s and a Riemannian metric g on M such that $d^2 = -I + \sum_{s=1}^{s} p_s \otimes F_{s=1} p_s (F_s) = \delta p_s p_s (F_s)$ _

$$p^{2} = -I + \sum_{\alpha=1} \eta_{\alpha} \otimes \xi_{\alpha}, \quad \eta_{\alpha} (\xi_{\beta}) = \delta_{\alpha\beta} , \eta_{\alpha} \circ \varphi = 0, \quad \phi(\xi_{\alpha}) = 0 \quad (2.1)$$

$$g(\phi X, \phi Y) = g(X, Y) - \sum_{\alpha=1}^{\infty} \eta_{\alpha} (X) \eta_{\alpha} (Y)$$

For any $X, Y \in TM$ In addition, we have $g(X,\phi Y) = -g(\varphi X, Y), \quad g(X,\xi_{\alpha'}) = \eta_{\alpha'}(X)$

A 2-form
$$\Phi$$
 defined by $\Phi(X,Y) = g(X,\phi Y) (\overline{\nabla}_X \phi)Y = \sum_{\alpha=1}^{s} [g(\Phi X,\phi Y)\xi_{\alpha} + \phi^2 X \eta_{\alpha}(Y)]$ (2.3)
 $\overline{\nabla}_X \xi_{\alpha} = -\phi X$ (2.4)

For any $X, Y \in T\overline{M}$, $\alpha, \beta = 1, \dots, s$

Let $T_{r}(M)$ and $T^{\perp}_{r}(M)$ Let M be a submanifold of \overline{M} denote the tangent and normal space of M at $x \in M$ respectively The Gauss and Weingarten formulas are given by $\overline{\nabla}_{V}Y = \nabla_{V}Y + \sigma(X,V)(2.5)$

$$\overline{V}_X I = V_X I + O(X, I)(2.3)$$

 $\overline{\nabla}_X N = -A_N X + \nabla^{\perp}_X N \qquad (2.6)$ for any vector fields X,Y tangent to M and any vector field N normal to M, where of $\overline{\nabla}$ and ∇ are the operator of covariant differentiation on and of \overline{M} and M, is ∇^{\perp} the linear connection induced in the normal space $T^{\perp}_{x}(M)$ Both A_N and σ are called the Shape operator and the second fundamental form and they satisfy

$$g(\sigma(X,Y),N) = g(A_NX,Y)$$
(2.7)

If the second fundamental form σ of M is of the form $\sigma(X, Y) =$ g(X, Y) μ , then M is called totally umbilical. where μ is the mean curvature. If the second fundamental form vanishes identically then M is said to be totally geodesic. If $\mu = 0$, then M is said to be minimal. A submanifold M of a S-manifold \overline{M} is said to be invariant if the structure vector field ξ of \overline{M} is tangent to M and $\varphi(T_x(M) \subset T_x(M))$, where $T_x(M)$ is the tangent space for all $x \in M$ and If $\varphi(T_x(M) \subset T^{\perp}_x(M))$

(2.2)

where $T^{\perp}_{x}(M)$ is the normal space at $x \in M$ then M is said to be anti-invariant in \overline{M} . Now we define S-manifold with constant ϕ -holomorphic sectional curvature Let L be the distribution determined by the projection tensor ϕ^2 - and let M be the complementary distribution which is determined by ϕ^2 +I and spanned by fields ξ_1, \dots, ξ_S It is clear that if $X \in L$ then $\eta_{\alpha}(X) = 0$ for any α and if $X \in TM$, then $\phi X = 0$, A plane section π on \overline{M} is called an invariant ϕ -section if it is determined by vector $X \in L(x)$, $x \in \overline{M}$ such that X, ϕX is an orthonormal pair spanning the section. The sectional curvature of ϕ is called the ϕ -sectional curvature . I f \overline{M} is an Smanifold of constant ϕ -sectional curvature k, then its curvature tensor has the form

$$\begin{split} \overline{R} & (X, Y, Z, W) = \sum_{\alpha\beta} (g(\phi X, \phi W) \eta_{\alpha}(Y) \eta_{\beta}(Z) - g(\phi X, \phi Z) \eta_{\alpha}(Y) \eta_{\beta}(W) \\ & \frac{(K+3S)}{4} [g(\phi X, \phi W)g(\phi Y, \phi Z) - g(\phi X, \phi Z)g(\phi Y, \phi W) \\ & + \frac{(K-S)}{4} g(\phi X, W) g(\phi Y, Z) - g(\phi X, \phi Z)g(\phi Y, \phi W) - 2g(\phi X, Y) \\ & g(\phi Z, W)] \end{split}$$

for any vector fields X, Y,Z,W on \overline{M} where X, Y,Z,W $\in T(\overline{M})$ Such a manifold \overline{M} (k) is called an S-space form. The Euclidean space E^{2m+1} and hyperbolic space H^{2m+s} are examples of S-space forms.

Let us define a tensor field T on \overline{M} by setting (2.9)

 $T(X,Y,Z,W) = \overline{R}(X, Y,Z,W) + [g(\phi X,W)g (\phi Y,Z) - g (\phi X,Z)g (\phi Y,W) - 2g(\phi X, Y)g(\phi Z,W)]$ (2.9)

The Gauss equation is given by

(2.9) \overline{R} (X, Y,Z,W) = R(X, Y,Z,W) + g($\sigma(X,Z)$, $\sigma(Y,W)$) - g($\sigma(X,W)$, $\sigma(Y,Z)$)

for any vector fields X,Y,Z,W on \overline{M}

A sub manifold M is said to \overline{R} -invariant and T-invariant if and only if

 \overline{R} (X, Y)Tx(M)) \subset Tx(M)) and (T(X, Y))Tx(M)) \subset Tx(M)) respectively.

3. SOME THEOREMS

Theorem 3.1. ;Let M be a submanifold tangent to _-frame $\{\xi_{\alpha}\}$, $\alpha=1,...,s$ of a S-manifold \overline{M}

If M is totally umbilical then M is totally geodesic.

Proof. Since ξ_{α} is tangent to M, we have from Gauss formula $\overline{\nabla}_X \xi_{\alpha}. = \nabla_X \xi_{\alpha}. + \sigma(X, \xi_{\alpha}).$ Using (2.1) (2.5) in the above we have $-\phi X = \nabla_X \xi_{\alpha}. + \sigma(X, \xi_{\alpha}).$ α= 1,, s Equating tangential and normal components $(\phi \mathbf{X})^{\mathrm{T}} = - \nabla_{\mathbf{X}} \boldsymbol{\xi}_{\alpha}.$, $(\phi \mathbf{X})^{\perp} = \boldsymbol{\sigma}(\mathbf{X}, \boldsymbol{\xi}_{\alpha})$ Putting $X = \xi_{\alpha}$. in second equation then by (2.1) we have $\sigma(\xi_{\alpha}, \xi_{\alpha}) = 0$ Let us assume that M is totally umbilical Then $\sigma(X, Y) = g(X, Y)\mu$ for any tangent vectors X,Y to M, where µ denotes the mean curvature vector, Putting $X = Y = \xi_{\alpha}$ $\sigma(\xi_{\alpha}, \xi_{\alpha}) = g(\xi_{\alpha}, \xi_{\alpha}) = 0$

This showes that $\mu = 0$

Hence $\sigma(X, Y) = g(X, Y) \mu$ implies $\sigma(X, Y) = 0$

If the second fundamental form $\sigma = 0$ then M is totally geodesic.

Remark 3.1 If M is totally geodesic then $(_\phi X)^{\perp} = \sigma(X, \xi_{\alpha}) = 0$, ϕX is tangent to M and

hence M is an invariant submanifold of S-manifold. Therefore M will also be S-manifold.

Theorem 3.2. Let M be a submanifold of a S-manifold ${}^{-}M$ tangent to linear span L($\{\xi_{\alpha}\}$) of structure vector field ϕ of $.\overline{M}$ Then L($\{\xi_{\alpha}\}$) is parallel with respect to the induced connection on M if and only if M is anti-invariant submanifold in $.\overline{M}$.

Proof. Suppose each structure vector field _____ of L($\{\xi_{\alpha}\}$) is tangent to M. By Gauss formula

(3.1)
$$\overline{\nabla}_X \xi_{\alpha} = -\phi X = \nabla_X \xi_{\alpha} + \sigma (X, \xi_{\alpha}).$$

Next suppose L({ ξ_{α} }) is parallel w.r.t induced connection on M, then each ξ_{α} is parallel to M. We have $\nabla_X \xi_{\alpha} = 0$ from equation(2.1) $-\phi X = \sigma(X, \xi_{\alpha})$

i.e
$$\phi X = \sigma(X, \xi_{\alpha})$$

Hence ϕX is normal to M

Since $_\phi X \in TxM^{\perp}$ thus M is anti-invariant

Conversly; suppose M is anti-invariant Then by definition of anti-invariant submanifolds

 $\phi X = \sigma(X, \xi_{\alpha})$

Hence from (3.1), $\nabla_X \xi_{\alpha} = 0$ This shows that ξ_{α} is parallel w.r.to the induced connection M. Hence the theorem.

Theorem 3.3. Let M be a submanifold of S- manifold \overline{M} . If ξ_{α} . L({ ξ_{α} . }) is normal to M then M is totally geodesic if and only if M is anti-invariant sub manifold.

Proof. : Suppose L($\{\xi_{\alpha}\}$) is normal to M and so each ξ_{α} is normal to M; then Weingarten formula implies

$$\nabla_{X}\xi_{\alpha} = -A_{\xi_{\alpha}}X + \overline{\mathcal{V}}_{A}^{\perp}\xi_{\alpha} \qquad (3.2)$$
Using (2.4) and (2.2) we have
 $g(\phi X, Y) = g(-\overline{\mathcal{V}}_{X}\xi_{\alpha}, Y) = g(A_{\xi_{\alpha}}X, Y) + g(-\overline{\mathcal{V}}_{A}^{\perp}\xi_{\alpha}, Y)$
 $=g(A_{\xi_{\alpha}}X, Y) \qquad (3.3)$
for any X and Y tangent on M. Interchange X and Y in the above
then we have

$$\begin{split} &g(\phi Y,X) = g(A_{\xi_{\alpha}}Y,X) \quad (3.4) \\ &Adding (2.3) \text{ and } (2.4) \text{ and by virtue of } (1.2) \text{ we have} \\ &g(A_{\xi_{\alpha}}X,Y) + g(A_{\xi_{\alpha}}Y,X) = 0 \\ &By (2.7) \text{ we have} \\ &g(\sigma(X,Y),\xi_{\alpha}) = g(A_{\xi_{\alpha}}X,Y) \\ &Since A_{\xi_{\alpha}} \quad \text{is symmetric, } g(A_{\xi_{\alpha}}X,Y) = 0. \\ &If M \text{ is totally geodesic , then } A_{\xi_{\alpha}} = 0 \text{ , then by } (2.2) \text{ and } (2.4) \\ &\phi X = \mathcal{P}_{\mathcal{X}}^{\perp}\xi_{\alpha} \in = \mathcal{T}_{\mathcal{X}}^{\perp} M \\ &Hence M \text{ is anti-invariant} \\ &Convresly; \text{ suppose M is anti-invariant then } \phi X \in \mathcal{T}_{\mathcal{X}}^{\perp} M \\ &then from (2.3) \text{ we get} \\ &g(A_{\xi_{\alpha}}X,Y) = 0 \end{split}$$

Then by (2.7), $\sigma(X, Y) = 0$ Hence M is totally geodesic. Thus the theorem is proved.

Theorem 3.4. Let M be an anti-invariant submanifold tangent linear span L($\{\xi_{\alpha}\}$) of the

structure vector fields ξ_{α} , $\alpha = 1,, s$ of S- manifold \overline{M} with constant k . If ANX = 0 for

any $N \in \mathcal{T}_{\mathcal{X}}^{\perp} M$ then $\phi(Tx(M))$ is parallel w r t the normal connection.

Proof. To show that $\phi(\text{Tx}(M))$ is parallel w.r.t. the normal connection ∇^{\perp} , we have to show that every local section $\phi Y \in \phi(\text{Tx}(M))$, $\nabla_x^{\perp} \phi(Y)$ is also a local section in $\phi(\text{Tx}(M))$. Using Gauss and Weingarten formula

$$\begin{split} \mathcal{P}_{\mathcal{X}}^{\perp} \ \phi \mathbf{Y} &= \overline{\mathcal{V}} \ \phi \mathbf{Y} + \mathbf{A} \phi \mathbf{Y} \mathbf{X} \\ \mathcal{P}_{\mathcal{X}}^{\perp} \ \phi \mathbf{Y} &= \overline{\mathcal{V}}_{\mathcal{X}} \ \phi \mathbf{Y} + \phi(\overline{\mathcal{V}}_{\mathcal{X}} \ \mathbf{Y}) + \mathbf{A} \phi \mathbf{Y} \mathbf{X} \\ &= \sum_{\alpha=l}^{s} \quad \left[\mathbf{g} \ (\boldsymbol{\mathscr{P}} \mathbf{Y}, \boldsymbol{\mathscr{P}} \mathbf{Y}) \ \boldsymbol{\xi}_{\alpha} + \ \boldsymbol{\mathscr{P}}^{2} \mathcal{X} \ \boldsymbol{\eta}_{\alpha}(\boldsymbol{Y}) \right] + \mathbf{A} \phi \mathbf{Y} \mathbf{X} + \ \phi \nabla_{\mathcal{X}} \\ \mathbf{Y} + \phi(\boldsymbol{\sigma}(\mathbf{X}, \mathbf{Y})) \end{split}$$

by virtue (1.3) and (1.5). Since AN = 0 for any $N \in \mathcal{T}_{\mathcal{X}}^{\perp} M$ we have

$$\begin{split} &g(\mathcal{P}_{\mathcal{X}}^{\perp}\phi\,\mathbf{Y},\mathbf{N}) \\ &= \sum_{\alpha=1}^{s} \quad \left[g\left(\mathscr{P}_{\mathcal{X}},\phi Y\right)g(\xi_{\alpha},\mathcal{N}) + \mathcal{G}(\varphi^{2}\mathcal{X},\mathcal{N})\eta_{\alpha}(Y)\right] + \\ &\mathcal{G}(\phi\nabla_{\mathcal{X}}Y,\mathbf{N}) + g(\phi(\sigma(X,Y),\mathbf{N}) + g(\varphi^{2}\mathcal{X},\mathbf{N}) + g(A\phi YX,\mathbf{N}) \end{split}$$

 $=-g(\nabla_{\lambda'}Y,\phi N)-g((\sigma(X,Y),\phi N)+g(A\phi YX,N))$ $=-g(\nabla_{\lambda'}Y,\phi N)-g(A\phi NX,N)+g(A\phi YX,N)$

Since ϕN is also in $\mathcal{T}_{\mathcal{X}}^{\perp} M$, R.H.S of the above equation is zero. Thus

 $g(\mathcal{V}_{X}^{\perp}\phi Y, N) = 0$ Hence the result.

If D denotes the orthogonal subspace of T \overline{M} to L({ ξ_{α} }) then we can write

 $T \overline{M} = D_{\oplus} L\{ \xi_{\alpha} \}.$

We prove the following Theorem.

Theorem 3.5. ; Let M be a submanifold of an S-manifold \overline{M} then M is anti-invariant if and only if D is integrable

Proof. ; Let X, Y \in D then X, Y \in T $\overline{\mathcal{M}}$ g([X, Y], ξ_{α}) = g($\overline{\nabla}_{\mathcal{X}}$ Y - , $\overline{\nabla}_{Y}$ X, ξ_{α}) =g($\overline{\nabla}_{\mathcal{X}}$ Y, ξ_{α}) - $\mathcal{G}(\overline{\nabla}_{Y}$ X, ξ_{α}) (3.5)

=Xg(Y, ξ_{α})-g(Y, $\overline{V}_{\lambda'}\xi_{\alpha}$)-Yg(X, ξ_{α})+g(X, $\overline{V}_{\lambda'}\xi_{\alpha}$) Using (1.4) we have (2.6) g([X, Y], , ξ_{α}) = 2g(ϕ X, Y) (3.6) Thus [X, Y] \in D if and only if ϕ X is normal to Y i.e [X, Y] \in D if and only if ϕ X $\in \mathcal{T}_{\lambda'}^{\perp}$ M i.e [X, Y] \in D if and only if M is anti-invariant i.e D is integrable if and only if M is anti-invariant Hence the theorem.

We have the following known result.

Proposition 2.6., [36] Let \mathcal{M}^{n+s} be a submanifold tangent to the structure vector fields of an S-manifold $\overline{\mathcal{M}}^{2n+s}$ (k) (k \neq s). Then $(\overline{\mathcal{R}} (X, Y,Z)W)^{\perp} = 0$ for any X, Y,Z,W \in T(M), if and only if \mathcal{M}^{n+s} is invariant or anti-invariant.

On the basis of the above we can prove the following theorem.

Theorem 3.6. Let M be a submanifold tangent to linear span L($|, \xi_{\alpha}|$) of structure vector

fields, ξ_{α} , $\xi_{\alpha} = 1$, ..., s of a S- manifold with constant k (k \neq 3) then M is T- invariant if only if M is invariant or anti-invariant. Proof. Easily follows from the Proposition 2.6

4. REFERENCES

[1] Cabrerizo.J.L, Fernandez.L.M and Fernandz. M. ,A Classification of Certain submanifold of an Smanifold, A⁻ nn polinici Mathematici 54(21),117-123 (1991)

[2] Cabrerizo.J.L, Fernandez.L.M., and Fernandz.M. ,A Classification Totally f-umbilical submanifold of an S-manifold, [•] Soochow J. Math.18(21),211-121(1992)

[3] Blair,DE, Geometry of manifolds with structural group U(n)×O(S), J.Differ.geom.Vol.4(1970),155-167

[4] J.VanzuraK. , Almost r-contact Structures , Ann.Scuola Norm.sup.pisa.Sci.Fis.mat.26(1972),97-115

[5] Blair, DE, Contact Manifolds in Riemannian geometry, Lecture Notes in Mathematics. Vol. 509. Springerverlag, Berlin and NewYork. (1976)

[6] K.R.Vidyavathi and C.S Bagewadi. A study on Ricci Soliton in S-manifolds, IOSR-JM J. VOL 13.Jan- Feb (2017).

[7] Mukut Mani Tripathi. Submanifolds of framed metric manifolds and S-manifolds, Note di.Matematica 20, N.2, (2001), 135-164

[8] K.R.Vidyavathi and C.S Bagewadi. Irrotational _-Curvature tensor In S-manifolds, IJMMS VOL 13.Jan- Jun (2017);155-166.

[9] Anitha B.S and C.S.Bagewadi. Invariant submanifolds of Sasakian manifolds Admitting Semisymmetric Nonmetric Connection, International Jounal of Mathematics and Mathematical science (2012) 18 pages

[10] C.S Bagewadi and Anitha B.S. Invariant submanifolds of TransSasakian manifolds, Ukrainian mathematical Jounal vol 67 no, 10 (2016);

[11] M.S.Siddesha and C.S Bagewadi. Submanifold of a (k, μ)-Contact manifold, CUBO A mathematical Journal J. VOL 18. N 01 (59-68).(2016)

[12] K.Yano. , On structure f-satisfying f3 + f = 0, Techinical report N o 12 . Univ.of Washington (1961)

[13] H.B.Pandey and Anilkumar ,Anti-invariant Submanifolds of almost para contact manifolds, Indian J.Pure appl.Math. 16(6); 586-590 (1985)

[14] K.Yano., On structure defined by a tensor field of type (1,1) satisfying f3+f=0, T[•] ensor 14(1963),99-109

[15] D.Nirmala, C.S Bagewadi and M.S.Siddesha. Semiinvariant Submanifold of a (k, μ) -Contact manifold, Journal-Bulletin of cal. math. Soc Journal VOL 109. No 02 93-100.(2016)

[16] MOHAMMED HASAN SHAHID. Some Results on Antiinvariant Submanifolds of a Trans- Sasakianmanifold., Bull.Malays.Math.Sci.(2) 27 (2004),117-127

[17] A.Brasil, G.A.Lobos, M.Marlano , C-Totally Real submanifolds with Parallel mean Curvature in _ - Sasakian space Forms, Matematica Contemporanca, Vol.34, (2008), sociedade Brasileia de Matematicano.

[18] Yano.K, M.Kon, Anti- -Invariant Submanifolds of a Sasakian Space forms, II., J.Korean Math Soc.13(1976).1-14

[19] Yildiz, A.Murathan , C.Arslan, K.Ezentas, R, C-totally real pseudo parallel submanifold of Sasakian space forms, Monatsh.Math 151, (2007), 247-256.

[20] Santos, W,,, Submanifolds with parallel mean curvature vector in spheres, Tohoku Math.J.46(1994), 403-415.

[21] Alegre .P, Carriazo,, A Structures on generalized Sasakianspace forms-, Differential Geom.App). 26 (2008). 656 666.

[22] Blair, DE, Contact Manifolds in Riemannian geometry , Lecture Notes in Mathematics.Vol.509. Springerverlag, Berlin and NewYork. (1976)

[23] D.E. Blair, T. Koufogiorgos and B. J. Papantoniou Contact metric manifolds satisfing a nullity condition, Israel J. Math., 91 (1995), 189214.

[24] B.Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo (1981).

[25] M. Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27 (1973), 330-336.

[26] C. Ozgur, C. Murathan, On invariant submanifolds of Lorenzian para-Sasakian manifolds, The Arabian J. Sci. Engg., 34, 24(2009), 177-185.

[27] Gerald D.Ludden,Masafumi Okumura,and Kentaro Yano, Anti- invariant submanifolds of almost contact metric manifolds, Math.Ann. Springer-Verlag 225.253-261 (1977),

[28] Sibel Sular, Cihan Ozgur and Cengizhan Murathan Pseudoparallel anti-invariant submanifolds of kenmotsu manifolds, Hacettepe, Journal of mathematics and statistics. vol.39(4)(2010),535-543

[29] S.I.GOldberg and K.Yano , Globally framed f-manifold, III J.Math 15 (1971), 456-474.

[30] C.S.Bagewadi, On totally real submanifolds of a Kahlerian manifold addmitting semisymmetric metric, Indian J.Pure Appl.Math.13(5) (1982),528-536

[31] J.A. Schouten, Ricci Calculas(second Edition), Springer-Verlag., (1954), 322.

[32] K.Yano and M.Kon, Anti-invariant submanifolds, pure and Applied Mathematics, N0.21 Marcel Dekker Inc Newyork, (1976).

[33] K.Yano and M.Kon, Anti-invariant submanifolds of a Sasakian space form Tohokumath J 9(1977),9-23. 12 C.S. Bagewadi and Venkatesha.S

[34] M.Hasan Shahid, Anti-invariant submanifolds of a Kenmotsu manifold, Kuwait J.Sci. and Eng.23(2), (1996).

[35] K. Yano, M. Kon, Structures on manifolds, World scintific publishing, (1984)