Comparative Evaluation of Chlorhexidine Chips and Tetracycline Fibers as an Adjunct to Non Surgical Periodontal Therapy: A Clinical Study

Dr. Muzafar Ahmad Bhat¹, Dr. Mudasir Ahmad Bhat²
Registrar
Department of Periodontics
Government Dental College, Srinagar Jammu & Kashmir, India¹
SKIMS MC/H, Bemina, Srinagar Jammu & Kashmir, India²

Abstract:
Aims: To clinically evaluate the efficacy of Chlorhexidine chip (PerioCol™ CG) with Tetracycline fibers (Periodontal Plus AB™).

Settings and Design: Randomized controlled, split mouth study design with an observation period of six months.

Materials and Methods: Patients were allocated in 3 experimental treatment groups, Group A: SRP + CHX Chip, Group B: SRP + Tetracycline fibers, and Group C: SRP alone (control group). 420 bleeding sites in 35 patients (18 females and 17 males) with chronic periodontitis (5-8mm probing depth), were evaluated clinically for pocket probing depth (PD), Relative Attachment level (RAL), and Bleeding on Probing (BoP).

Statistical Analysis: T‑test and CV.

Results: All the treatment groups were found to be efficacious as demonstrated by improvement in PD, CAL, and BoP. In the short term, CHX group showed increased gain of RAL but on long term observation the Tetracycline fiber group showed better consistent clinical results in comparison to the other two groups.

Conclusions: Group B (SRP + Tetracycline fibers) resulted in better optimum clinical results in comparison to the other two treatment groups.

I. INTRODUCTION

It has been well established that bacteria have a prominent role in periodontal disease. Though mechanical therapy (scaling and root planning) [SRP]) has been the mainstay of periodontal therapy but its efficacy is limited by biochemical considerations and physical impediments. Soon after SRP, the bacteria begin reattaching to the teeth forming a biofilm. Overtime, this biofilm becomes more pathogenic due to succession of bacteria. Antimicrobial agents (AMAs) may be used as an adjunct to reduce the bacterial challenge to the periodontium. Their controlled release directly into the periodontal pockets by chips, films, microspheres, gels, strips, monolithic devices, fibers, etc., is an effective therapeutic intervention. Goodson (1985) suggested that for a drug delivery system to be effective and clinically useful in periodontal therapy, it must be delivered to the base of the pocket, should achieve a minimal inhibitory concentration (MIC), and sustain the achieved concentration in the periodontal pocket for a sufficient period of time to be effective.[1] In addition, other considerations include the ease of placement, retention after placement, biodegradability of the agent, and acceptable cost.[2] The most crucial factor determining the success and efficacy of a local drug delivery (LDD) agent is the length of time the microflora is exposed to the agent and the goal is to maintain effective concentrations of AMA at the site of action for longer periods, despite drug loss from crevicular fluid clearance. LDD agents can be divided into two classes according to the duration of medicament release: (1) Sustained release devices and (2) Controlled delivery devices. Sustained release formulations are designed to provide drug delivery for less than 24 hours. On the other hand, controlled delivery system should have a duration of drug release that exceeds one day.[3] Chlorhexidine (CHX) is a broad-spectrum antimicrobial agent that at low concentrations causes damage to the cell membrane of microorganisms, while at higher concentrations is known to cause precipitation and coagulation of the proteins in the cytoplasm of exposed microbes.[4] Various studies[5–9] have validated the efficacy of CHX chip, and it has been noticed that the average concentration of CHX in the gingival crevicular fluid remains greater than 125 mg/mL for eight days and is inhibitory to 99% of bacteria isolated from periodontal pockets.[10] Tetracycline (TC) is a broad-spectrum polyketide antibiotic that binds to the 30S subunit of microbial ribosomes, thereby inhibiting protein synthesis and being active against both Gram-positive and Gram-negative bacteria. The delivery of TC has been promoted in several systems (powder, irrigation solution, gel, incorporated in nonresorbable fibers [dialysis tubing or ethylene–vinyl acetate monolithic fibres].[11] Regrettably, majority of the studies have tested a single form of LDD system or systemic administration instead of comparing various forms of therapy. A thorough literature search revealed only 27 intra subject split mouth studies over the years, with most being conducted with metronidazole gel. To the best of our knowledge, only two split mouth studies between CHX chips and TC fibers exist.[12,13] One[12] is a case report while the other[13] is a single time administration of CHX and TC fibers with a follow up duration of only three months. As CHX and TC
are the most commonly dispensed LDD agents, a split mouth study comparing their effect over a six-month period was planned, with administration of the agents twice during the study period.

II. MATERIALS AND METHODS

Thirty-five patients were selected amongst the patients attending the outpatient department of Department of Periodontics Govt Dental College and Hospital Srinagar. The subjects were ascertained to be in good general health without any systemic disease. The selected patients had not received antibiotics, steroids, or oral prophylaxis for at least six months prior to the start of the study. Forty-one patients (21 males and 20 females) age between 20-50 years having a set of 22 or more teeth, pocket probing depth of 5-8 mm, clinical attachment loss >3 mm at minimum six teeth, presence of bleeding on probing, and willingness to comply were included. They were free from any unusual oral lesions, any condition requiring premedication before dental treatment, non-allergic to TC or CHX, and without any prosthesis. After recruitment, all patients passed an etiologic phase wherein supragingival scaling, polishing, and repeated oral hygiene instructions were imparted. This phase lasted till their full-mouth plaque score (FMPS) and full-mouth bleeding score (FMBS) were less 15% (four sites per tooth); thus, the patient qualified for baseline examination. Of the total of 41 subjects, six patients had to be excluded after enrolment while passing the etiologic phase (two subjects: unsatisfactory oral hygiene performance; four subjects: intake of antibiotics for other medical reasons) [Figure 1].

Clinical measurements

Clinical parameters pocket probing depth (PD), Relative Attachment level (RAL), and Bleeding on Probing (BoP) were measured at baseline, one, three, and six months after therapy at all the selected teeth. PD and gingival recession were measured at four sites per tooth to the nearest 1 mm, by UNC-15 periodontal probe using gingival margin as a reference. Relative attachment level (RAL) (in mm) was recorded using acrylic stent on study cast for each patient and trimmed to height of contour of the teeth and one vertical groove prepared to reproduce the probe angulation and position. BoP was recorded dichotomously as present or absent for each site after probing the respective quadrant.

Scaling/root planing

Following baseline examination, SRP was performed quadrant per quadrant under local anesthesia in four visits at all sites exhibiting a PD >5 mm. SRP was completed within one week. At the post-treatment control i.e. 1 week after conclusion of SRP, teeth were supragingivally scaled and polished, and oral hygiene instructions were reinforced. Subsequently, the patients were allocated either to the CHX chip group (Group A/Test), TC fiber group (Group B/Test), or only SRP group (Group C/control) by simple randomization to eliminate the bias in treatment assignment. The chosen sites were isolated with cotton rolls, then air dried with dental unit’s three-way syringe, and CHX chip was inserted into the dried periodontal pocket (baseline PD >5 mm) and gently pushed to the bottom of the periodontal pocket. The chip was adjusted to size with a scalpel if necessary and a maximum of two chips per tooth were dispensed. Similarly, the contralateral sites received TC fibers [Figures 3 and 4]. A periodontal pack was given after the placement of chips/fibers so that a higher local concentration of AMA was maintained for a longer duration of time.

Supportive periodontal therapy

All patients received routine Supportive periodontal therapy (SPT) consisting of clinical measurements, supragingival scaling, followed by polishing and provision of oral hygiene instructions at all control visits of one, three, and six months. Local anesthesia was delivered if demanded and root planing was performed at all BoP positive sites with a PD >5 mm and at sites exhibiting a PD >5 mm. After completion of one month SPT visit, repetition of insertion of the CHX chips and TC fibers in test sites with remaining PD >5 mm was done. One week before all SPT visits of one, three, and six months, supragingival scaling with polishing of all teeth and reinforcement of oral hygiene instructions were carried out so as to minimize the measurement errors due to newly formed calculus and avoid false-positive BoP results due to sole sulcular bleeding.

Data presentation and statistical analysis

The entire database was imported into a statistical software program, locked, and analyzed (SPSS 17.0) Student’s T-test was used for calculating the significance level and intragroup comparison. Coefficient of variation was used for intergroup comparison as well as to find the most precise procedure of all the three groups

III. RESULTS

Out of the total 41 selected patients, 35 patients (18 females and 17 males) in the median age of 36 years (range, 20-50 years) completed the total duration of the study. Six subjects (four subjects: intake of antibiotics for other medical reasons and two subjects: unsatisfactory oral hygiene performance) dropped out. An average of seven CHX chips per patient (range, 6-10) were administered after SRP. At the SPT visit after one month, a significantly lower number of CHX chips were placed (3 chips per patient, range from 2-7, P < 0.001). Similarly, the amount of TC fibers placed in the periodontal pocket also decreased in the one month after SPT visit.

Full-mouth median values for clinical parameters

The changes in clinical parameters throughout the study period for full-mouth PD and RAL are shown in Tables 1-5. At one month, all three groups showed marked improvement in periodontal conditions as revealed by significant reductions of PD and RAL gain (P < 0.001). After one and three months visit, a significant change was observed between the change in PD and RAL gain between all three groups. However, at that time, the change in RAL gain was significantly higher in the CHX group/Group A. It was observed that PD significantly increased again between three and six months, in group A, B, and C [Tables 1-3]. However, in comparison to baseline values, a significant difference was observed in all three groups at one, three, as well as six months.
Table 1. Group A: SRP+CHX Chips

<table>
<thead>
<tr>
<th>Duration</th>
<th>Mean value (mm)</th>
<th>Std. deviation</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Baseline</td>
<td>6.32</td>
<td>0.921</td>
<td>1.785 - 2.456</td>
<td>0.000</td>
</tr>
<tr>
<td>At 1 month</td>
<td>4.73</td>
<td>0.912</td>
<td>0.949 - 1.424</td>
<td>0.000</td>
</tr>
<tr>
<td>At 1 month</td>
<td>4.73</td>
<td>0.912</td>
<td>-0.103 - 0.324</td>
<td>0.284</td>
</tr>
<tr>
<td>At 3 month</td>
<td>3.54</td>
<td>0.654</td>
<td>3.018 - 3.584</td>
<td>0.000</td>
</tr>
<tr>
<td>At 6 month</td>
<td>3.26</td>
<td>0.984</td>
<td>3.26 - 3.26</td>
<td>0.984</td>
</tr>
</tbody>
</table>

SRP – Scaling and root planing; CHX – Chlorhexidine

Table 2. Group B: SRP+Tetracycline fibers

<table>
<thead>
<tr>
<th>Duration</th>
<th>Mean value (mm)</th>
<th>Std. deviation</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Baseline</td>
<td>6.21</td>
<td>0.911</td>
<td>1.983 - 2.413</td>
<td>0.000</td>
</tr>
<tr>
<td>At 1 month</td>
<td>4.32</td>
<td>0.901</td>
<td>0.603 - 0.921</td>
<td>0.000</td>
</tr>
<tr>
<td>At 3 month</td>
<td>3.23</td>
<td>0.671</td>
<td>0.072 - 0.323</td>
<td>0.003</td>
</tr>
<tr>
<td>At 6 month</td>
<td>3.12</td>
<td>0.872</td>
<td>2.722 - 3.582</td>
<td>0.000</td>
</tr>
</tbody>
</table>

SRP – Scaling and root planing

Table 3. Group C: SRP alone

<table>
<thead>
<tr>
<th>Duration</th>
<th>Mean value (mm)</th>
<th>Std. deviation</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Baseline</td>
<td>7.21</td>
<td>0.911</td>
<td>1.983 - 2.413</td>
<td>0.000</td>
</tr>
<tr>
<td>At 1 month</td>
<td>5.22</td>
<td>0.901</td>
<td>0.603 - 0.921</td>
<td>0.000</td>
</tr>
<tr>
<td>At 3 month</td>
<td>5.33</td>
<td>0.671</td>
<td>0.072 - 0.323</td>
<td>0.003</td>
</tr>
<tr>
<td>At 6 month</td>
<td>5.22</td>
<td>0.872</td>
<td>2.722 - 3.582</td>
<td>0.000</td>
</tr>
</tbody>
</table>

SRP – Scaling and root planing

Table 4. Mean change in PD

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.42</td>
<td>2.76</td>
<td>1.42</td>
</tr>
<tr>
<td>Std. deviation</td>
<td>1.313</td>
<td>1.042</td>
<td>1.211</td>
</tr>
<tr>
<td>CV</td>
<td>57.24</td>
<td>38.54</td>
<td>83.52</td>
</tr>
</tbody>
</table>

PD – Probing depth

Table 5. Mean change in RAL

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.32</td>
<td>3.21</td>
<td>1.32</td>
</tr>
<tr>
<td>Std deviation</td>
<td>1.198</td>
<td>0.962</td>
<td>1.218</td>
</tr>
<tr>
<td>CV</td>
<td>34.64</td>
<td>28.13</td>
<td>84.02</td>
</tr>
</tbody>
</table>

RAL – Relative attachment level
IV. DISCUSSION

It is well established that the measures of outcome of periodontal therapy can estimate periodontal stability or future disease progression.[14] Higher proportions of increased deep PD sites indicate lack of periodontal stability and are considered to be the strongest predictor for future attachment loss.[15] Thus, the proportion of remaining deep sites is regularly used as an indicator for the requirement of additional periodontal surgery.[16] LDD agents help in decreasing the oral microbial load in the periodontal pocket, thus, resulting in better clinical parameters. The aim of this randomized controlled, split mouth study was to compare the clinical efficacy of SRP alone and SRP along with controlled delivery CHX chips (PerioCol™ CG) and TC fibers (Periodontal Plus AB™) as an adjunct to mechanotherapy in chronic periodontitis patients. CHX chip (rounded at one end) for easy insertion into the periodontal pockets. Each chip is derived from a biodegradable matrix of type 1 fish collagen and contains approximately 2.5 mg of CHX gluconate Periodontal Plus AB™ consists of four individual vials, with each vial containing 25 mg of pure fibrillar collagen containing approximately 2 mg of evenly impregnated TC hydrochloride. After completion of the etiotropic phase, all the selected patients exhibited low plaque levels at baseline and subsequent appointments indicative of good oral hygiene performance, successful re-motivation, and adherence to oral hygiene instructions in supportive periodontal care. Group A and B did not show any further significant changes in plaque levels after baseline and showed significantly less supragingival plaque even after six months. All the groups showed marked and significant improvements in PD, RAL, and BoP (P < 0.001) [Tables 1-3]. PD changes between Group A and B were comparable though PD reduction was higher in Group B [Table 4 and Figure 5]. RAL “gain” was comparable for both the groups, with Group A showing better results in comparison to Group B [Table 5 and Figure 6]. Though improvement of self-performed oral hygiene do have an effect on the parameters, it is unlikely to have caused significant change of PDs and RALs because improved oral hygiene alone only marginally affects the subgingival microflora.[17] Although the maximum benefits of SRP with or without adjunctive antimicrobials are generally expected to occur within the first three months after treatment,[18,19] a continuous improvement in full-mouth PD over the whole observation period of six months was observed in group B. In contrast to Group A and B, PD increased and decreased RAL “gain” was statistically significant in Group C between three and six months [Table 3]. Intergroup comparison between Group A and B showed Group B to have a lower coefficient of variation, thus confirming this group to be more precise of all the groups [Tables 4 and 5] despite decreased RAL “gain” observed in the first month. The most intriguing finding from this study has been that CHX has shown to achieve a concentration of 125 μg/mL for eight days which is more than the concentration achieved by TC; however, decreased PD reduction and increased RAL “gain” was observed in comparison to TC group. The reason for the same could not be explained due to scant literature available on comparison of these agents. Group B faring better than Group A could be attributed to less tissue penetration of CHX. Tissue levels of CHX after chip insertion have not been reported, whereas subgingival placement of a TC-loaded fiber produces effective concentrations of TC within periodontal soft tissues.[20] It could also be attributed to TC’s action of inhibiting collagenase activity, collagen degradation, and bone resorption as shown by Golub et al.[21] TC has shown to reach a concentration of 1590 μg/mL and is shown to be bactericidal to oral bacteria present on root surface.[22] Amazingly, despite the high concentration of TC present in the periodontal pocket, it does not have any adverse effect on the pocket epithelium.[23] Interestingly, a study by Purucker et al.[24] has shown TC fiber therapy and systemic amoxicillin and clavulanic acid to have a similar clinical outcomes, while another study[25] showed TC therapy to be as effective as SRP. Though the authors do not advocate it to be as equally efficacious as the gold standard i.e. SRP, it has shown promising results.

V. CONCLUSION

Both CHX chips and TC fibers are capable of delivering a high concentration of drug to the site of periodontal infection, though Group B (SRP + TC fibers) resulted in better optimum clinical results in comparison to the other two treatment groups. For the selection of appropriate local drug system, the clinician has to weigh the efficacy of the product, availability, ease of the use, and the cost factor. Although, LDD systems do not replace time tested periodontal therapies, they definitely prove to be a strategic interventional modality with an important place in the treatment of periodontal disease. LDD systems are an effective and simple nonsurgical method, offering the dentist an additional method to aid in the control of periodontal disease.

VI. REFERENCES


