
International Journal of Engineering Science and Computing, June 2017 13629 http://ijesc.org/

ISSN XXXX XXXX © 2017 IJESC

Fault Prediction using Metric Threshold Value of Object Oriented

Systems
Shruti Gupta

1
, D.L Gupta

2

M.Tech Scholar

1
, Associate Professor

2

Department of Computer Science and Engineering

Kamla Nehru Institute of Technology, Sultanpur, Uttar Pradesh, India

Abstract:

Software metrics helps in analyzing many factors of software quality such as fault proneness, reusability, and maintenance effort.

Software metrics are values collected from software source code to analyze and evaluate where problems are more probable to

occur. These values are used to flag warnings of the problem causing parts of software code using threshold values. However, the

proposed techniques did not consider the data distribution and skewness in data. A methodology based on removing redundancy

and then log transformation to improve the metrics quality has been implemented. To explore the effect of removing redundancy

and performing log transformation on data analysis, we conduct analysis of using software metrics after transformation in

identifying fault-prone areas on multiple releases of 8 products (30 releases). This methodology results show that the removing

redundancy and then doing log transformation can be used to derive threshold values for all metrics under investigation and then

performing the fault classification for each metric. In this research, we aim to propose a methodology to remove redundancy in

datasets record values of 8 products (30 releases) after which again log transformation technique is used to calculate threshold

value. The results of the transformation after removing redundancy are then used to conduct fault-proneness classification based

on threshold values and compared against the results of fault classification based on threshold value after log transformation

without removing redundancy in dataset record values. The fault classification after removing redundancy in dataset record values

is better than fault classification without removing redundancy in dataset record values.

Keywords: Software metrics; CK metrics; Software metric thresholds; Software quality; Fault Prediction; Redundancy removal

I. INTRODUCTION

One of the objectives in software engineering is controlling of

software quality. Quality of a software design can be measured

by quantitative means provided by software design metrics and

these software design metrics are may be the basis of

techniques that can help in controlling software quality. There

have been abundant amount of studies on software metrics in

both the procedural and object-oriented (OO) paradigms. We

often use software metrics to predict the behaviour of a system

or the components of a system. In the OO paradigm, empirical

studies have shown that metrics could predict quality factors

such as class error proneness, maintenance effort, maintenance

performance, design, and project progress. However, the data

used in these studies were collected during the development

phases of the systems. As systems continue to evolve after

their release, significant amounts of resources must be

dedicated to maintain the quality of the systems as they evolve

[4]. Although the post-release systems tend to have fewer

errors than the systems that are under development, they are

still not free of errors. Software maintenance effort, which is

the effort required to keep the post-release systems functioning

properly, has been reported to be the largest share of the entire

software cost; one estimate puts the maintenance cost at 60%

of all effort expended by a development organization and the

figure continues to rise. The challenge of locating and fixing

errors still exists in the post-release systems. Fault proneness

is measured indirectly using a set of software metrics that

measures the internal attributes of software systems. These

metrics should have been validated empirically in previous

research and can be considered consolidated set of software

metrics, although there are some variations in how these

metrics are defined and collected [5]. These metrics also have

been used in many quality tools, either commercial or open

source, to track and audit software quality (e.g., Understand for

Java and ckjm). The software developers and testers can use

metric tools to audit and track the complex parts of the system

that need more attention and maintenance. Many metric tools

can be integrated in development environments (e.g., Atollic

True STUDIO, Understand for Java, and resource standard

metrics (RSM)). For example, for the purpose of maintaining

the internal quality of systems, tools can identify code smells

such as God Classes in a system. God Classes are such classes

that are very big and have very large responsibilities, and

usually code analysts consider it as a source of faults in the

system. Software metrics in such cases can lead the developers

to maintain the internal structure of the system throughout

applying many refactoring operations such as Extract class,

Extract Superclass, or Extract Interface. Therefore, software

metrics are becoming widely in tools to assess software

quality. The metrics have shown skewness to the right in many

previous researches. There is a belief that software metrics

follow other distributions rather than the normal distribution

[6,7]. There are many research papers that discussed the log-

normal distribution as a possible fit for software metrics [8-

10]. In addition, although many research papers have derived

threshold values of metrics, these derivations were not

successful for all metrics [11-19]. There are two primary uses

of metrics: the factor-prediction models and the threshold

values. Most previous studies on OO metrics offered empirical

models to predict factors such as error proneness and

maintenance activities. However, these models did not offer

threshold values for the metrics and they are not applicable in

early phases of the software design. Metric threshold values

can help us identify the problematic classes as we design them.

With the help of threshold values, a design engineer can

Research Article Volume 7 Issue No.6

International Journal of Engineering Science and Computing, June 2017 13630 http://ijesc.org/

monitor the design modules (with the help of tools) during the

daily engineering work and make quick re-design decisions if

the metrics of the modules exceed the threshold values. In this

work, we propose to use data transformation after removing

redundancy in data to improve the data quality and to reduce

data skewness. We suggest to validate the effect of redundancy

removal and transformation on two important applications of

software metrics in assessing and evaluating software quality:

threshold derivation and fault classification. Firstly, we remove

redundancy in order to avoid erroroneous observations leading

to incorrect statisatics results. And then we derive thresholds

for a well-known suite of metrics, the Chidamber and Kemerer

(CK) metrics [20]. CK metrics can be used to analyze software

quality either by using graphical diagrams or by setting

threshold values ([19]; Rosenberg et al. [42]). These threshold

values are usually set based on developers experience or

derived from research. This research aims to find software

metrics threshold values from the transformations of metrics

using the log transformation after removing redundancy in the

dataset record values and on the basis of these derived

thresholds fault prone classification of software is conducted.

In this research, we removed redundancy from the dataset

record values, then we use the natural log function to transform

all metrics. The threshold values are then derived for all log

metrics. We validated our findings by using derived thresholds

in predicting faulty classes in two scenarios: without removing

redundancy and after removing redundancies. The results show

better performance in identifying faulty classes using the

derived thresholds from the log transformation after removing

redundancy in the dataset record values than using the derived

thresholds from the log transformation without removing

redundancy from the dataset record values. The remainder of

the paper is organized as follows. In section 2 we describe the

research, software metrics in general, dataset collection, model

used, OO metrics threshold values, and the performance

evaluation. In Section 3 we present the detailed results analysis

and observation in our research. Finally in Section 4 we

conclude our research work and present future enhancements.

II. RESEARCH METHODOLOGY

In this section, we discuss the CK metrics that we have

considered in our research work. And then we discuss we

discuss the model shown in Figure I that we use for removing

redundancy in dataset record observations, deriving threshold

values using log transformation and then finally using these

derived thresholds to predict fault and thus evaluating

performance.

A. The Chidamber and Kermerer (CK) Metrics

Chidamber and Kemerer have proposed and validated a suite

of 21 metrics. But in our work we have considered 6 metrics

from the CK metric suite that covers six different concepts of

the internal software quality. These metrics encompasses

concepts of cohesion, coupling, complexity, inheritance depth,

number of children, and class responsibility. These metrics are

defined as follows:

 Weighted Methods Complexity (WMC): The WMC

metric is used to count the number of methods in a class. This

metric is used to cover the concept of complexity. Values of

WMC are directly proportional to the complexity that is if

values of WMC are larger than complexity also increases and

vice-versa.

 Depth of Inheritance Hierarchy (DIT): The DIT

metric covers the concept of the inheritance depth. This metric

is used to measure the length of inheritance depth tree from

root class to the considered class. This metric helps the

developers to understand all the characteristics that are

inherited in the considered class like specialization concept in

database.

 Number of Child Classes (NOC): This NOC metric

encompasses the concept of number of children of a

considered class. The NOC metric counts the number of

descendant of the considered class. This metric is used to

developers the number of times the considered class has been

inherited by another class to increase their specialization and

uses.

 Coupling Between Objects (CBO): The CBO metric

covers the concept of coupling which shows the strength of

interconnection among classes in a software system. The

metric is measured by counting the number of coupling to

other classes. Couplings are counted for method calls, field

accesses, inheritance, method arguments, return types, and

exceptions. It is told in previous papers that values of CBO are

directly proportional to the faults in a software system that is if

values of CBO are larger then greater are the chances of the

fault occurences and vice-versa.

 Response For Class (RFC): The RFC metric covers

the concept of class responsibility. This RFC metric is used for

counting the number of responses in the response set for the

considered class which includes the number of local methods

and the number of remote methods invoked by other local

methods. The response set includes classes whose methods in

class inheritance and methods that can be invoked in other

objects. Larger the values of RFC, it shows that class has many

interaction with other classes.

 Lack Of Cohesion Of Methods (LCOM): The LCOM

metric is the difference number of the pair of methods in a

class that have similar attributes(A) and number of the pair of

methods in a class that have no similar attributes(B). If the

difference is negative then value of LCOM becomes 0. This

metric covers the concept of the cohesion which means that it

describes the inter-relatedness of objects among the class. It is

stated that low cohesion leads to increase in complexity

resulting in more faults in a class.

Relationship between fault-proneness in a class and CK metric

has been studied in many previous research papers. In a survey

on the effect of metrics on fault proneness, authors found out

that object-oriented metrics are more successful in finding

faults than the procedural metrics [22]. The study also found

out that CK metrics were the most used set of metrics suite to

predict fault proneness of classes, that is, NOC (53 papers),

DIT (52 papers), RFC (51 papers), LCOM (50 papers), CBO

(48 papers), and WMC (44 papers). Three metrics, WMC,

CBO, and RFC, were always effective in predicting fault

proneness, while LCOM was not effective and DIT and NOC

were not very useful. To provide more detailed indicators of

the effect of the CK metrics on fault proneness, we

summarized the effect of CK metrics on fault proneness as

shown in [15]. We summarize these results in Table I. Large

values of WMC, RFC, and CBO metrics increase the fault

proneness of classes. Large values of DIT and LCOM metrics

in most studies also increase the fault proneness of classes. We

can notice that NOC is less studied and large values of NOC

metric have a negative impact on fault proneness in three

studies and a positive impact in only two studies. Although,

International Journal of Engineering Science and Computing, June 2017 13631 http://ijesc.org/

these results and the recent survey do not suggest studying all

the CK metrics, we intend to include all CK metrics in this

study for the comparison with previous findings.

Table.I. Summary of the impact of Chidamber and

Kemerer metrics on fault proneness as reported in ([15]:

Table I).

B. Dataset Collection

We have conducted our research work in 8 open source

projects over their multiple releases. The detailed description

of each project having multiple releases in stated in Table II.

These open source project have been developed in JAVA and

their source code is easily available online. We have collected

the metrics for 30 releases and in Table II last two columns

describe the number of releases for the project and the number

of classes in last release of project. These details have

collected using open source tool CKJM. The metric dataset for

the 8 projects is publicly reported by PROMISE data

repository [23,24].

C. Redundancy Removal

In this research, we propose to remove redundancy from

dataset record values after the dataset is extracted from the

publicly available PROMISE data repository. The dataset

obtained from the PROMISE data repository contains 21 CK

metrics for consideration but we consider only 6 CK relevant

metrics namely WMC, DIT, NOC, CBO, RFC, LCOM. From

these 6 considered metrics we remove duplicate set of record

values from them and only unique set of record values remain

in the dataset. Redundancy removal avoids the problem of

over-fitting and scaling problem [2,3].

Table.2. Systems Under Investigation

Figure.1. Model used to remove redundancy, threshold derivation and fault classification and performance evaluation

D. Threshold Derivation

In this research, we propose to use log transformation to find

threshold values after removing redundancy from the dataset

using the mean and standard deviation (two-thirds of data are

within one standard distribution). We follow the process as

depicted in Figure 1 to find threshold values for a particular

International Journal of Engineering Science and Computing, June 2017 13632 http://ijesc.org/

system. In this work, the process is conducted for multi-

releases of 8 projects in Java from various application domains

and different sizes. The study lays emphasis on the CK-metric

suite as it was widely reported on many research papers in both

empirical and theoretical validations as quality predictors. CK

metrics were used repeatedly to predict software quality factors

including fault proneness, software reusability, and

maintenance effort. The process starts by collecting the data

for the CK metrics for all releases.

The distribution of software metrics data has been analyzed in

previous researches such as Basili et al. [43]; [25, 26]. All

studied metrics are found positively skewed to the right

(Figure 2 shows the histograms of all metrics in Camel version

1.0). All other project releases also have skewed distribution in

our data sets. Hence, metrics are not always well characterized

by their descriptive statistics. Data skewness affects the

interpretation and usage of software metrics in evaluating

software systems. Distributions skewed to the right do not

necessarily follow the normal distribution.

Therefore, a transformation is needed to produce data that are

less skewed and more close to fit a normal distribution. There

is a variety of transformations that is usually used to reduce

skewness in data, but the most used ones are logarithmic

transformation, the square root transformation, and the inverse

transformation [27]. The log transformation cannot produce

transformation for zero values; therefore, a constant should be

added (e.g., 1 is added in this work). The square root does not

work for negative values, and if values are continuous between

0 and 1 as well as above one, then the square root is not

desirable. The inverse transformation reverses the order of

software modules, which is not desirable in this work.

In this research, we propose to use the logarithmic

transformation because it reduces the relative distances

between data points, which are how this technique reduces

skewness in metrics data [27]. As an example, we present the

effect of data transformation in Camel 1.0. Table III shows the

skewness index before and after reducing redundancy and the

log transformation for Camel 1.0. We use the skewness index

to show the differences between before and after

transformation. Skewness index is a measure of asymmetry in

data distribution [27].

 The normal distribution has a skewness of zero, and any

symmetric data should have a skewness near zero. The

skewness parameter after the transformation is close to zero

and therefore closer to a normal distribution for all metrics.

The NOC metric is the most asymmetric because most of its

values are zeroes. All metrics data are transformed into a

natural log, and then the parameters, the mean, and the

standard deviation are calculated.

Table.3. Skewness statistics before and after redundancy removal in camel 1.0

METRIC Skewness before

removing redundancy

and without log

transformation

Skewness after

removing

redundancy and

without log

transformation

Skewness before

removing

redundancy and

after log

transformation

Skewness after

removing

redundancy and

after log

transformation

WMC 3.442751 3.416036 0.222655 0.220327

DIT 0.990612 0.968959 0.199898 0.13434

NOC 6.284786 6.130979 3.627331 3.566791

CBO 6.959064 6.857178 0.25098 0.257802

RFC 2.300273 2.285333 0.42717 0.44778

LCOM 9.493816 9.264176 0.671351 0.606597

To find a threshold value for a metric using the distribution

parameters, we use the following calculations:

T’= μ + Ω, T’’= μ-Ω;

Where, μ is the mean and Ω is the standard deviation.

These are then considered threshold values that can be used to

detect where more faults could be introduced. However, the

metrics under investigation are lower bounded, and we propose

to derive only one threshold value using μ + Ω that identifies

most complex parts (>threshold value) of the systems under

investigation. We use the mean and the standard deviation

together to find the one- third of the data, but because we need

the data on the right then the identified cases are within the

upper one-sixth of the data. The results of the T′ are

representative of the transformed data, and we need to reverse

the transformation back to produce thresholds on the original

data. The values of T′ are reversed back using the exponential

function and denoted T in the following calculation:

T = Exp(T’)

The values of T are produced for all systems (30 releases)

under investigation for all six metrics. The derived metrics are

then evaluated to identify the faulty classes, and the results are

compared with the thresholds that are derived using the

parameters after removing redundancy with transformation.

International Journal of Engineering Science and Computing, June 2017 13633 http://ijesc.org/

Figure.2. Histograms for all metrics in Camel 1.0 before transformation.

E. Threshold Performance Evaluation

Threshold values are vital to help both developers and testers

in locating which classes need more attention. Derived

thresholds should be evaluated against one of the software

quality factors. In this research, we validate the derived

thresholds to classify whether classes are faulty or not. The

fault data for the systems under investigation were collected

from repositories of the projects and summarized by the

Promise Data Repository [23,24]. The authors have used

BugInfo to collect the fault data. BugInfo analyzes the history

of the classes by studying the code repositories (Subversion or

Concurrent Versions System). If a log contains a fault fix

description, then the affected classes are marked as faulty.

BugInfo uses regular expressions to extract fault information.

When a log description fits to a regular expression, then faults

count is incremented. Faulty classes are the classes that have

more than one fault reported in the repository; otherwise,

classes are marked not faulty. These cases are considered

actual in the confusion matrices as shown in Table IV. A

threshold value is used to classify the classes into two groups:

faulty classes, if a metric value>= T and not faulty classes, if a

metric value<T. Classes in the first group are considered more

fault prone, while classes in the second group are otherwise.

From this classification, we can create a confusion matrix as

shown in Table IV. The confusion matrix is used to measure

the performance of using thresholds model in identifying

actual fault classes using three measures, Recall, Precision, F-

measure and accuracy. These measures are calculated as

follows:

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , Precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃

F − measure =
 β

2 + 1 ∗ precision ∗ recall

𝛽2 ∗ precision + recall

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

- The term β is used to assign a weight to the Recall. In our

work, β is equal to 1, and Recall and Precision are equally

weighed.

- True positives (TP): faulty classes that are correctly classified

as such, that is, there are faults fixed in the class (faulty) and

the metric value exceeds the threshold (faulty).

- False negatives (FN): faulty classes that are misclassified as

not faulty, that is, there are faults fixed in the class (faulty), but

the metric value is less than threshold (not faulty).

International Journal of Engineering Science and Computing, June 2017 13634 http://ijesc.org/

- True negatives (TN): nonfaulty classes that are correctly

classified as such, that is, there are no faults fixed in the class

(not faulty) and the metric value is less than threshold (not

faulty).

- False positives (FP): nonfaulty classes that are misclassified

faulty, that is, there are no faults fixed in the class (not faulty),

but the metric value exceeds the threshold (faulty).

Table.4. The confusion matrix based on a threshold value

The values of both the Recall and Precision are between 0 and

1. Values that are close to 1 mean better results. If the value is

1, then the classifier is ideal and without FN or FP. However,

the high values of Recall and Precision do not coincide. In

practice, it is hard to achieve high Recall and Precision, that is,

high Recall occurs often with low Precision. We use F-

measure, which can be used to assess the overall classification

performance and combine both Recall and Precision. In

addition, F-measure is not sensitive to imbalance in data,

which is the case in studying fault proneness of software, that

is, few classes are marked fault and the majority is marked not

faulty. To find the effect of data transformation, we derived

thresholds from two data sets: before transformation and after

transformation. Both sets of thresholds are then used to classify

classes into faulty or not. We then compare the obtained

classification from transformed data against the results of fault

classification obtained from original data. The performance of

fault classification is compared using F-measure. Large values

of F-measure are desired and should be close to 1. To find the

significance of the differences in performance (F-measure)

between the two techniques (before versus after

transformation), we conducted a pairwise Wilcoxon signed-

rank test at the 95% confidence level. This test is

nonparametric and does not have assumptions about the

underlying distribution of the data. The differences are

significant between the two groups if the statistical test, p-

value, is less than 0.05. There are significant differences

among the two thresholds except for DIT. The identified

thresholds in both techniques for DIT metric are very close to

three; therefore, no differences are expected in threshold

applications as well.

III. RESEARCH RESULTS

We conducted the process in Figure 1 to derive thresholds and

the performance for predicting faults for all data sets for the six

metrics.

A. Threshold Calculation Result

We do not provide detailed results for all releases and only the

mean values of all releases in the 8 systems under

investigation. We provide details on the releases of only one

system, Camel, as shown in Table V. In the following, we

discuss the results for each metric separately.

Table.5. Derived Thresholds for all metrics in Camel

WMC DIT NOC CBO RFC LCOM

Camel 1.0 13.86996 3.066556 1.039278 16.49223 36.2753 51.40451

camel 1.2 15.13335 3.089331 1.069965 17.29478 39.64393 61.91362

camel 1.4 15.57284 3.221924 1.049051 18.62215 41.7294 67.78625

camel 1.6 15.55869 3.240955 1.04794 18.93689 41.86846 69.24618

We have calculated threshold values of 6 CK metrics after

removing redundancy from datasets for 8 projects. The

calculated values are shown as follows in Table VI.

 WMC Threshold: WMC indicates the complexity of

class or interface. It is basically the sum of all complexities of

the methods in a class. WMC metrics large values are thought

to be problematic and thus those classes are marked as so. The

team of developers and testers are then required to go through

the marked classes to find possible problems in their coding

and designing. In previous studies various threshold values of

WMC values have been given but there is still no widespread

agreement on a particular value. Table VI shows the calculated

thresholds for the 8 systems under investigations. These are the

average values for multiple releases of each project. We could

not notice a common trend in the evolution of the 8 projects for

consecutive releases but there is no large difference among the

consecutive releases values. The mean value is approximately

17.

 DIT thresholds: DIT indicates number of ancestors of

a class, that is, DIT metric indicates depth of inheritance in a

class. DIT tells the developer the number of times the

considered class is inherited by other classes. Larger values of

DIT values are considered to have more complex classes,

which leads to difficulty in understanding, maintaining, and

reusing of the classes, thus these classes are marked to be

investigated during testing and maintenance phases of software

development lifecycle. There have been many studies

regarding the impact of DIT but there is no given widespread

acceptable value of DIT. Table VI shows the calculated

threshold values for DIT for the 8 projects. We can notice that

DIT does not vary like WMC during evolution of consecutive

releases of 8 projects, that is, all values are close to three. The

mean is equal to three.

 NOC thresholds: NOC indicates the descendants of a

class, that is, NOC tells the number of classes that is inherited

by considered class during its execution. NOC indicates both

inheritance and abstraction in classes. Larger values of NOC

are considered problematic and can be marked as so during

maintenance and testing phases. Various previous studies have

tried to reach common agreeable NOC threshold values but

there is no widespread acceptance for particular value. Table

VI shows the calculated threshold values for the 8 projects. We

notice that the all the values of threshold are approximately

equal to 1.

 CBO thresholds: CBO metric counts the number of

other classes to which a class is coupled. CBO is used for

International Journal of Engineering Science and Computing, June 2017 13635 http://ijesc.org/

measuring coupling among classes. High coupling is

considered to be problematic leading to more complex classes

making it difficult to understand, increasing testing and

maintenance efforts and thus these classes are marked in both

the designing and coding phase. Coupling among classes can

be reduced by code cleaning and refactoring continuously.

Various previous studies reported many threshold values for

CBO. Table VI shows the threshold values. We notice that

CBO values does not vary much among the 8 projects, and we

could notice that values have increasing trend for later releases.

Mean value is approximately 17.

 RFC threshold: RFC is an indicator of the amount of

responsibility performed by class. The RFC metric counts the

number of methods in the response set for a class, which

includes the number of methods in the class and the number of

remote methods invoked by the methods in the class. Classes

having large response set are prone to more faults and thus

needing more maintenance. Such classes require more rigorous

testing to be sure that all requirements are met by classes

assigned to them. RFC values show great variation among the

threshold values and thus there is no common threshold value

for all systems. Table VI shows the threshold values for the

RFC metric. Mean value is approximately 51.

 LCOM thresholds: LCOM metric is the number of

pairs of methods in the class using no attribute in common,

minus the number of pairs of methods that do. The LCOM is

set to zero if this difference is negative. Lack of cohesion in

class has a harmful effect on the quality of design. Low-

cohesive classes show ill-structuring and difficult to maintain

and test of the classes. Low-cohesive classes affect both

encapsulation and abstraction levels in class design. To

increase cohesion in class we can code cleaning and

refactoring. However, to complete their tasks correctly, the

developers need to know which level of cohesion is required.

The LCOM metric was recognized as the most ill-defined

metric among other CK metrics. Table VI shows the threshold

values the LCOM metric. We notice that LCOM values show

great variations among the 8 projects for different releases. The

mean value is approximately equal to 66.

Table.6. Threshold values for 6 CK Metrics after removing redundancy for 8 projects

wmc

threshold

(mean)

dit

threshold

(mean)

noc

threshold

(mean)

cbo

threshold

(mean)

rfc

threshold

(mean)

lcom

threshold

(mean)

ant 18.12077 3.685256 1.052722 17.18905 61.83121 70.37726

camel 15.03371 3.154691 1.051558 17.83651 39.87927 62.58764

ivy 17.85609 2.773193 0.783952 18.697 57.41576 87.72123

jedit 19.30622 4.343282 0.836688 21.08781 69.70872 80.05485

log4j 12.53094 2.436433 0.661855 11.94717 42.07368 34.988

lucene 15.76911 2.555124 1.297417 16.77015 40.68402 28.64256

synapse 12.38651 2.233747 0.776952 20.94617 54.74754 34.56419

xerces 22.47552 3.030955 0.993855 12.89372 45.6356 125.7596

An important concept of object oriented systems is inheritance.

This concept of inheritance helps developers of software to

reuse existing system components. It is suggested to favour

composition as a means of reusing existing system components

in the object-oriented designing of system more than the

concept of inheritance [28,29]. If software developers have no

intention to change the design of inherited classes, then the

exposure of design of super-classes takes place in the

subclasses, which may result in making subclasses more fault-

prone. The inheritance of a program is measured using two CK

metrics namely, DIT and NOC. In this research, we have

identified threshold values for these metrics, DIT ≡ 3 and NOC

≡ 1. However, the data values in dataset considered in this

research show that nearly all the classes in dataset have value

of zero for the NOC metric, therefore mean value of NOC

metric is very small in our observation result. The selected

threshold for NOC may not be meaningful, because most

classes have NOC= 0. Therefore NOC>=1 separates between

parent and leaf classes. On the other hand, the selected

threshold for DIT is also small. However, there are many

research papers that published similar thresholds for DIT (Daly

et al.[30-32]), and our results support those previous findings.

The low variability in inheritance metrics (DIT and NOC) has

been observed in many previous research papers. A large

number of classes have NOC= 0. Table I also shows that NOC

and DIT have no significant relationship with fault proneness

in many research papers. However, the CK metrics are used as

a suite to measure different aspects of software design and

code, and inheritance metrics are still needed to fully measure

a software system. The work of McCabe and Rosenberg has

not suggested any thresholds for the NOC (Rosenberg et al.

1999)[21]. In addition, Shatnawi et al. [14]could not report a

threshold for NOC using Receiver Operating Characteristic

(ROC) analysis[14].

B. Performance Calculation Result

We do not provide detailed results for all releases and only the

mean values of all releases in the 8 systems under

investigation. We provide details on the releases of only one

system, Camel. In the following, we discuss the results for

each metric separately.

International Journal of Engineering Science and Computing, June 2017 13636 http://ijesc.org/

 Precision Calculation:

Table.7.Values of precision before and after removing

redundancy and after log transformation for camel for

WMC

 WMC before

removing

redundancy

WMC after

removing

redundancy

camel 1.0 0.101695 0.105263

camel 1.2 0.455357 0.5

camel 1.4 0.335404 0.368852

camel 1.6 0.329545 0.351563

Table.8.Values of precision before and after removing

redundancy and after log transformation for camel for DIT

 DIT before

removing

redundancy

DIT after

removing

redundancy

camel 1.0 0.029412 0.029412

camel 1.2 0.25 0.25

camel 1.4 0.222222 0.222222

camel 1.6 0.173554 0.173554

Table.9. Values of precision before and after removing

redundancy and after log transformation for camel for

NOC

 NOC before

removing

redundancy

NOC after

removing

redundancy

camel 1.0 0.097561 0.071429

camel 1.2 0.452055 0.45283

camel 1.4 0.25 0.25

camel 1.6 0.333333 0.352113

Table.10.Values of precision before and after removing

redundancy and after log transformation for camel for

CBO

 CBO before

removing

redundancy

CBO after

removing

redundancy

camel 1.0 0.184211 0.176471

camel 1.2 0.423077 0.442857

camel 1.4 0.261905 0.267241

camel 1.6 0.330827 0.364407

Table.11.Values of precision before and after removing

redundancy and after log transformation for camel for

RFC

 RFC before

removing

redundancy

RFC after

removing

redundancy

camel 1.0 0.085106 0.073171

camel 1.2 0.443299 0.460674

camel 1.4 0.321918 0.326241

camel 1.6 0.318182 0.323741

Table.12. Values of precision before and after removing

redundancy and after log transformation for camel for

LCOM

 LCOM before

removing

redundancy

LCOM after

removing

redundancy

camel 1.0 0.125 0.125

camel 1.2 0.472222 0.5

camel 1.4 0.343373 0.340278

camel 1.6 0.320225 0.335484

Table.13. Values of precision(mean) before and after removing redundancy and after log transformation for 8 projects

 Recall Calculation:

Table.14. Values of Recall before and after removing

redundancy and after log transformation for camel for

WMC

 WMC before

removing

redundancy

WMC after

removing

redundancy

camel 1.0
0.461538 0.307692

camel 1.2
0.236111 0.189815

camel 1.4
0.372414 0.310345

camel 1.6
0.308511 0.239362

Table.15. Values of recall before and after removing

redundancy and after log transformation for camel for DIT

 DIT before

removing

redundancy

DIT after removing

redundancy

camel 1.0

0.076923 0.076923

camel 1.2

0.074074 0.074074

camel 1.4

0.165517 0.165517

camel 1.6

0.111702 0.111702

International Journal of Engineering Science and Computing, June 2017 13637 http://ijesc.org/

Table.16. Values of recall before and after removing

redundancy and after log transformation for camel for

NOC

 NOC before

removing

redundancy

NOC after removing

redundancy

camel 1.0 0.307692 0.153846

camel 1.2 0.152778 0.111111

camel 1.4 0.186207 0.110345

camel 1.6 0.207447 0.132979

Table.17. Values of recall before and after removing

redundancy and after log transformation for camel for

CBO

 CBO before

removing

redundancy

CBO after

removing

redundancy

camel 1.0 0.538462 0.461538

camel 1.2 0.152778 0.143519

camel 1.4 0.227586 0.213793

camel 1.6 0.234043 0.228723

Table.18. Values of recall before and after removing

redundancy and after log transformation for camel for

RFC

 RFC before

removing

redundancy

RFC after

removing

redundancy

camel 1.0 0.307692 0.230769

camel 1.2 0.199074 0.189815

camel 1.4 0.324138 0.317241

camel 1.6 0.260638 0.239362

Table.19. Values of recall before and after removing

redundancy and after log transformation for camel for

LCOM

 LCOM before

removing

redundancy

LCOM after

removing

redundancy

camel 1.0 0.615385 0.538462

camel 1.2 0.236111 0.208333

camel 1.4 0.393103 0.337931

camel 1.6 0.303191 0.276596

Table .20. Values of recall(mean) before and after removing redundancy and after log transformation for 8 projects

 F-Measure Calculation:

Table.21. Values of F-measure before and after removing

redundancy and after log transformation for camel for

WMC

 WMC before

removing

redundancy

WMC after

removing

redundancy

camel 1.0
0.166667 0.156863

camel 1.2
0.310976 0.275168

camel 1.4
0.352941 0.337079

camel 1.6
0.318681 0.28481

Table.22. Values of F-measure before and after removing

redundancy and after log transformation for camel for DIT

 DIT before

removing

redundancy

DIT after

removing

redundancy

camel 1.0 0.042553 0.042553

camel 1.2 0.114286 0.114286

camel 1.4 0.189723 0.189723

camel 1.6 0.135922 0.135922

Table.23. Values of F-measure before and after removing

redundancy and after log transformation for camel for

NOC

 NOC before

removing

redundancy

NOC after

removing

redundancy

camel 1.0

0.148148 0.097561

camel 1.2

0.228374 0.178439

camel 1.4

0.213439 0.15311

camel 1.6

0.255738 0.19305

Table.24. Values of F-measure before and after removing

redundancy and after log transformation for camel for

CBO

 CBO before

removing

redundancy

CBO after

removing

redundancy

camel 1.0
0.27451 0.255319

camel 1.2
0.22449 0.216783

camel 1.4
0.243542 0.237548

camel 1.6
0.274143 0.281046

International Journal of Engineering Science and Computing, June 2017 13638 http://ijesc.org/

Table.25. Values of F-measure before and after removing

redundancy and after log transformation for camel for

RFC

 RFC before

removing

redundancy

RFC after

removing

redundancy

camel 1.0 0.133333 0.111111

camel 1.2 0.27476 0.268852

camel 1.4 0.323024 0.321678

camel 1.6 0.28655 0.275229

Table.26. Values of F-measure before and after removing

redundancy and after log transformation for camel for

LCOM

 LCOM before

removing

redundancy

LCOM after

removing

redundancy

camel 1.0 0.207792 0.202899

camel 1.2 0.314815 0.294118

camel 1.4 0.366559 0.3391

camel 1.6 0.311475 0.303207

Table.27. Values of F-measure (mean) before and after removing redundancy and after log transformation for 8 projects

 Accuracy Calculation:

Table.28. Values of Accuracy before and after removing

redundancy and after log transformation for camel for

WMC

 WMC before

removing

redundancy

WMC after

removing

redundancy

camel 1.0 82.30% 87.32%

camel 1.2 62.83% 64.47%

camel 1.4 77.29% 79.70%

camel 1.6 74.30% 76.58%

Figure.3. Comparison of accuracy before and after

removing redundancy and after log transformation for

camel for WMC

Table.29. Values of Accuracy before and after removing

redundancy and after log transformation for camel for DIT

 DIT before

removing

redundancy

DIT after

removing

redundancy

camel 1.0 86.73% 86.73%

camel 1.2 59.21% 59.21%

camel 1.4 76.49% 76.49%

camel 1.6 72.33% 72.33%

Figure.4. Comparison of accuracy before and after

removing redundancy and after log transformation for

camel for DIT

Table.30. Values of Accuracy before and after removing

redundancy and after log transformation for camel for

NOC

 NOC before

removing

redundancy

NOC after

removing

redundancy

camel 1.0 86.43% 89.09%

camel 1.2 63.32% 63.65%

camel 1.4 77.18% 79.70%

camel 1.6 76.48% 78.34%

Figure.5. Comparison of accuracy before and after

removing redundancy and after log transformation for

camel for NOC

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

before
redundancy
removal

after
redundancy
removal

50.00%
60.00%
70.00%
80.00%
90.00%

ca
m

el
 1

.0

ca
m

el
 1

.2

ca
m

el
 1

.4

ca
m

el
 1

.6

before
redundanc
y removal

after
redundanc
y removal

60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

before
redundancy
removal

after
redundancy
removal

International Journal of Engineering Science and Computing, June 2017 13639 http://ijesc.org/

Table.31. Values of Accuracy before and after removing

redundancy and after log transformation for camel for

CBO

 CBO before

removing

redundancy

CBO after

removing

redundancy

camel 1.0 89.09% 89.68%

camel 1.2 62.50% 63.16%

camel 1.4 76.49% 77.18%

camel 1.6 75.85% 77.20%

Figure.6. Comparison of accuracy before and after

removing redundancy and after log transformation for

camel for CBO

Table.32. Values of Accuracy before and after removing

redundancy and after log transformation for camel for

RFC

 RFC before

removing

redundancy

RFC after

removing

redundancy

camel 1.0
84.66% 85.84%

camel 1.2
62.66% 63.32%

camel 1.4
77.41% 77.75%

camel 1.6
74.72% 75.44%

Figure.7. Comparison of accuracy before and after

removing redundancy and after log transformation for

camel for RFC

Table.33. Values of Accuracy before and after removing

redundancy and after log transformation for camel for

LCOM

 LCOM before

removing

redundancy

LCOM after

removing

redundancy

camel 1.0 82.01% 83.78%

camel 1.2 63.49% 64.47%

camel 1.4 77.41% 78.10%

camel 1.6 73.89% 75.23%

Figure.8. Comparison of accuracy before and after

removing redundancy and after log transformation for

camel for LCOM

Table.34. Values of Accuracy (mean) before and after removing redundancy and after log transformation for 8 projects

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

before
redundancy
removal

after
redundancy
removal

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

before
redundancy
removal

after
redundancy
removal

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

before
redundancy
removal

after
redundancy
removal

International Journal of Engineering Science and Computing, June 2017 13640 http://ijesc.org/

WMC

DIT

NOC

CBO

RFC

LCOM

Figure. 9. Comparison of accuracy before and after removing redundancy and after log transformation for 8 projects

C. Observation

There were several values of threshold given based on

previous research papers as shown in Table XXXV [44-

45,25,34-41,11-17].

In this thesis we have observed several threshold values for 6

CK metrics namely, WMC, DIT, NOC, CBO, RFC and LCOM

for all 8 Projects (30 releases) as shown in TABLE XXXVI.

Table.35. Summary of previously identified thresholds

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

before
redundancy
removal

after
redundancy
removal
before

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

before
redundanc
y removal

after
redundanc
y removal

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

an
t

ca
m

el iv
y

je
d

it

lo
g4

j

lu
ce

n
e

sy
n

ap
se

xe
rc

es

before
redundanc
y removal

after
redundanc
y removal

45.00%

55.00%

65.00%

75.00%

an
t

ca
m

el iv
y

je
d

it

lo
g4

j

lu
ce

n
e

sy
n

ap
se

xe
rc

es

before
redundancy
removal

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

an
t

ca
m

el iv
y

je
d

it
lo

g4
j

lu
ce

n
e

sy
n

ap
se

xe
rc

es

before
redundancy
removal

after
redundancy
removal

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

A
n

t

C
am

el Iv
y

Je
d

it

Lo
g4

j

Lu
ce

n
e

Sy
n

ap
se

xe
rc

es

LCOM
before
removin
g
redund…

International Journal of Engineering Science and Computing, June 2017 13641 http://ijesc.org/

Table.36.Threshold obtained after removing redundancy

and after log transformation

Metric Threshold values after removing

redundancy after log

transformation

WMC 17

DIT 3

NOC 1

CBO 17

RFC 51

LCOM 65

Based on these threshold values derived after removing

redundancy from record values of datasets and log

transformation, we have performed fault classification for each

metric and thus obtained performance of fault prediction for

each metric. We have observed accuracy of predicting fault

after removing redundancy and after log transformation for

each metric is better than accuracy of predicting fault before

removing redundancy and after log transformation for each

metric for all 8 projects(30 releases).

Table.37. Accuracy of predicting fault after removing

redundancy and after log transformation and before

removing redundancy and after log transformation

METRIC Accuracy after

removing

redundancy and

after log

transformation

Accuracy before

removing

redundancy and

after log

transformation

WMC 70.50% 69.80%

DIT 61.82% 61.57%

NOC 66.61% 66.38%

CBO 69.68% 69.48%

RFC 71.02% 70.69%

LCOM 69.61% 69.05%

IV. CONCLUSION AND FUTURE ENHANCEMENT

Finding where quality can be improved is a vital issue in

software quality and is one of the major uses of software

metrics. Appropriate metric tools and analysis techniques are

needed to identify the classes that are more fault-prone during

both development and testing phases. Software practitioners

can analyze software quality using metrics by setting threshold

values to mark the most complex classes. However, the

currently identified thresholds do not account for the skewness

in data distribution. In this work, we proposed to remove

redundancy and to use data transformation to improve two

techniques of software quality assessment: derive threshold

values and fault classification using the derived metrics. Data

distribution has been used before to identify thresholds values

using the mean and the standard deviation. However, most

previous works have not considered for removing redundancy

in dataset that ultimately result in over-fitting and scaling

problems. So we use redundancy removal technique in dataset

to reduce problem of over-fitting and scaling. along with that

most previous works have not considered the effect of data

transformation on quality assessment. We used the log

transformation to reduce the effect of skewness in data. The

results were attained from studying 8 different Java projects

from the open-source field. To evaluate the effectiveness of the

results obtained after transformation, we used the transformed

metrics to derive thresholds. The derived thresholds were used

to classify classes into either faulty (<thresholds) or not faulty

otherwise, and we repeated the classification using the

thresholds that were derived from metrics before the

transformation. The statistical comparison showed better fault

classification after redundancy removal and log-transformed

data than otherwise. We suggest to remove redundancy and to

use data transformation on software metrics before assessing

software quality.

In the future, we intend to use complete suite of CK metric

suite to derive threshold and perform fault classification and

thus evaluate their performance and compare them against

previous studies. In future, we plan to consider more factors

that affect the derivation of consistent and practical thresholds.

In addition, we plan to validate the effect of using thresholds

on development and maintenance activities such as code

refactoring. And in addition the researcher plans to expand this

study to more diverse datasets.

V. REFERENCES

[1].Shatnawi R. Deriving metrics thresholds using log

transformation. Journal of software: evolution and process, j.

Softw. Evol. And proc. 2015; 27:95–113.

[2].Tamilselvi J, Gifta C. Handling Duplicate Data in Data

Warehouse for Data Mining. International Journal of Computer

Applications (0975 – 8887) Volume 15– No.4, 2011

[3].Cheng A. The Causes, Impact and Detection of Duplicate

Observations. Pfizer, Inc., New York.

[4].Zimmermann T, Nagappan N, Zeller A. Predicting bugs

from history. Software Evolution (Software Evolution), 2008;

69–88.

[5].Lincke R, Lundberg J, Löwe W. Comparing software

metrics tools. Proceedings of the 2008 international

symposium on Software testing and analysis, ISSTA, New

York, NY, USA, 2008; 131–142.

[6].Baxter G, Frean M, Noble J, Rickerby M, Smith M, Visser

M, Melton H, Tempero E. Understanding the shape of Java

software. SIGPLAN Not 2006; 41(10):397–412.

[7].Barkmann H, Lincke R, Löwe W. Quantitative evaluation

of software quality metrics in open-source projects. Proc

Works. Advanced Information Networking and Applications,

2009; 1067–1072.

[8].Herraiz I, Rodriguez D, Harrison R. On the statistical

distribution of object-oriented system properties, emerging

trends in software metrics (WETSoM). 3rd International

Workshop on 2012; 56–62.

[9].Concas G, Marchesi M, Pinna S, Serra N. Power-laws in a

large object-oriented software system. IEEE Transactions on

Software Engineering 2007; 33(10):687–708.

[10].Louridas P, Spinellis D, Vlachos V. Power laws in

software. ACM Transactions on Software Engineering and

Methodology 2008; 18(1):1–26.

[11].Erni K, Lewerentz C. Applying design–metrics to object–

oriented frameworks. Proc. of the Third International Software

Metrics Symposium 1996; 25–26.

[12].Benlarbi S, El Emam K, Goel N, Rai S. Thresholds for

object–oriented measures. 11th International Symposium on

International Journal of Engineering Science and Computing, June 2017 13642 http://ijesc.org/

Software Reliability Engineering. IEEE Computer Society:

Los Alamitos CA, 2000; 24–38.

[13].El Emam K, Benlarbi S, Goel N, Melo W, Lounis H, Rai

S. The optimal class size for object–oriented software. IEEE

Transactions on Software Engineering 2002; 28(5):494–509.

[14].Shatnawi R, Wei L, Swain J, Newman T. Finding

software metrics threshold values using ROC curves. Journal

of Software Maintenance & Evolution, Research & Practice

2010; 22(1):1–16.

[15].Shatnawi R. Quantitative investigation of the acceptable

risk levels of object–oriented metrics in open–source systems.

IEEE Transactions on Software Engineering 2010; 36(2):216–

225.

[16].Catal C, Alan O, Balkan K. Class noise detection based on

software metrics and ROC curves. Information Sciences 2011;

181(21):4867–4877.

[17].Ferreira K, Bigonha M, Bigonha S, Mendes L, Almeida

H. Identifying thresholds for object–oriented software metrics.

Journal of Systems and Software 2012; 85(2):244–257.

[18].Foucault M, Palyart M, Falleri J, Blanc X. Computing

contextual metric thresholds. published in 29th Symposium on

Applied Computing, Gyeongju, Korea, Republic Of, 2014.

[19].Oliveira P, Tulio F, Lima V. Extracting relative thresholds

for source code metrics, IEEE CSMR- WCRE, Antwerp,

Belgium, 2014; 254–263.

[20].Chidamber S, Kemerer C. A metrics suite for object

oriented design. IEEE Transactions on Software Engineering

1994; 20(6):476–493.

[21].McCabe Software. Using code quality metrics in

management of outsourced development and maintenance,

white paper, last accessed November 2013. Available

from:http://www.mccabe.com/pdf/McCabeCodeQualityMetric

s–OutsourcedDev.pdf.

[22].Radjenović D, Heričko M, Torkar R, Živkovič A.

Software fault prediction metrics: a systematic literature

review. Information and Software Technology 2013;

55(8):1397–1418.

[23].Jureczko M, Madeyski L. Towards identifying software

project clusters with regard to defect prediction. Proceedings

of the 6th International Conference on Predictive Models in

Software Engineering, 2010; 1–10.

[24].Jureczko M, Spinellis D. Using object-oriented design

metrics to predict software defects. Proceedings of the 5th

International Conference on Dependability of Computer

Systems, 2010: 69–81.

[25].Gyimothy T, Ferenc R, Siket I. Empirical validation of

object-oriented metrics on open source software for fault

prediction. IEEE Transactions on Software Engineering 2005;

31(10):897–910.

[26].Olague H, Etzkorn L, Gholston S, Quattlebaum S.

Empirical validation of three software metrics suites to predict

fault-proneness of object-oriented classes developed using

highly iterative or agile software development processes, IEEE

Transactions on Software Engineering 2007; 33(8):402–419.

[27].Osborne J. Notes on the use of data transformations.

Practical Assessment, Research & Evaluation 2002; 8(6).

Available from: http://pareonline.net/getvn.asp?v=8&n=6.

[28].Gamma E, Helm R, Johnson R, Vlissides J. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley Publishing Company: One Jacob Way,

Reading, Massachusetts, 1994.

[29].Gil J, Maman I. Micro patterns in Java code. OOPSLA,

2005; 97–116.

[30].Daly J, Brooks A, Miller J, Roper M, Wood M.

Evaluating inheritance depth on the maintainability of object-

oriented software, Journal of Empirical Software Engineering

1996; 1(2):109–132.

[31].Cartwright M. An empirical view of inheritance.

Information and Software Technology 1998; 40(14):795–799.

[32].Prechelt L, Unger B, Philippsen M, Tichy W. A controlled

experiment on inheritance depth as a cost factor for code

maintenance. Journal of Systems and Software 2003;

65(2):115–126.

[33].Gronback R. Software remodeling: improving design and

implementation quality, using audits, metrics and refactoring

in Borland Together ControlCenter. A Borland White Paper,

January 2003.

[34].Marinescu R. Measurement and quality in object-oriented

design. Proceedings of the 21st IEEE International Conference

on Software Maintenance ICM05, 2005; 701–704.

[35].Rosenberg L. Metrics for object oriented environment.

Proc., EFAITP/AIE 3rd Annual Software Metrics Conference,

1997.

[36].Alves TL, Ypma C, Visser J. Deriving metric thresholds

from benchmark data. Proceedings of the IEEE International

Conference on Software Maintenance (ICSM ’10), September

2010; 1–10.

[37].Alves TL, Correia JP, Visser J. Benchmark-based

aggregation of metrics to ratings. Proceedings of the 21st

International Workshop and 6th International Conference on

Software Process and Product Measurement (IWSM-

MENSURA ’11), 2011; 20–29.

[38]. Sánchez-González L, Garcia F, Mendling J, Ruiz F.

Quality assessment of business process models based on

thresholds. On the Move Federated Conference - 18th

International Conference on Cooperative Information Systems,

Crete, Greece, October 2010; 27–29.

[39]. Sánchez-González L, Garcia F, Mendling J, Ruiz F. A

study of the effectiveness of two threshold definition

techniques. 16th International Conference on Evaluation and

Assessment in Software Engineering (EASE 2012), Ciudad

Real, Spain, 14-15 May 2012.

[40].Perez-Castillo R, Sánchez-González L, Piattini M, Garcia

F, Garcia-Rodriguez I. Obtaining thresholds for the

effectiveness of business process mining. Proceedings of the

International Journal of Engineering Science and Computing, June 2017 13643 http://ijesc.org/

International Symposium on Empirical Software Engineering

and Measurement 2011; 453–462.

[41].Mendling J, Sánchez-González L, García F, La Rosa M.

Thresholds for error probability measures of business process

models. Journal of Systems and Software 2012; 85(5):1188–

1197.

[42].Rosenberg LH, Stapko R, Gallo A. Risk-based object

oriented testing. 24th Annual Software Engineering Workshop.

Goddard Space Flight Center 1999.

[43].Basili V, Briand L, Melo W. A validation of object-

oriented design metrics as quality indicators. IEEE

Transactions on Software Engineering 1996; 22(10): 751–761.

[44]. Cartwright M, Shepperd M. An empirical investigation of

an object-oriented software system. IEEE Transactions on

Software Engineering 2000; 26(8): 786–796.

[45].Subramanyam R, Krishnan M. Empirical analysis of CK

metrics for object-oriented design complexity: implications for

software defects. IEEE Transactions on Software Engineering

2003; 29(4): 297–310.

[46].Herbold S, Grabowski J, Waack S. Calculation and

optimization of thresholds for sets of software metrics.

Empirical Software Engineering 2011; 16(6): 812–841.

