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Abstract: 

Software metrics helps in analyzing many factors of software quality such as fault proneness, reusability, and maintenance effort. 

Software metrics are values collected from software source code to analyze and evaluate where problems are more probable to 

occur. These values are used to flag warnings of the problem causing parts of software code using threshold values. However, the 

proposed techniques did not consider the data distribution and skewness in data. A methodology based on removing redundancy 

and then log transformation to improve the metrics quality has been implemented. To explore the effect of removing redundancy 

and performing log transformation on data analysis, we conduct analysis of using software metrics after transformation in 

identifying fault-prone areas on multiple releases of 8 products (30 releases). This methodology results show that the removing 

redundancy and then doing log transformation can be used to derive threshold values for all metrics under investigation and then 

performing the fault classification for each metric. In this research, we aim to propose a methodology to remove redundancy in 

datasets record values of 8 products (30 releases) after which again log transformation technique is used to calculate threshold 

value. The results of the transformation after removing redundancy are then used to conduct fault-proneness classification based 

on threshold values and compared against the results of fault classification based on threshold value after log transformation 

without removing redundancy in dataset record values. The fault classification after removing redundancy in dataset record values 

is better than fault classification without removing redundancy in dataset record values. 
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I. INTRODUCTION 

 

One of the objectives in software engineering is controlling of 

software quality. Quality of a software design can be measured 

by quantitative means provided by software design metrics and 

these software design metrics are may be the basis of 

techniques that can help in controlling software quality. There 

have been abundant amount of studies on software metrics in 

both the procedural and object-oriented (OO) paradigms. We 

often use software metrics to predict the behaviour of a system 

or the components of a system. In the OO paradigm, empirical 

studies have shown that metrics could predict quality factors 

such as class error proneness, maintenance effort, maintenance 

performance, design, and project progress. However, the data 

used in these studies were collected during the development 

phases of the systems. As systems continue to evolve after 

their release, significant amounts of resources must be 

dedicated to maintain the quality of the systems as they evolve 

[4]. Although the post-release systems tend to have fewer 

errors than the systems that are under development, they are 

still not free of errors. Software maintenance effort, which is 

the effort required to keep the post-release systems functioning 

properly, has been reported to be the largest share of the entire 

software cost; one estimate puts the maintenance cost at 60% 

of all effort expended by a development organization and the 

figure continues to rise. The challenge of locating and fixing 

errors still exists in the post-release systems.  Fault proneness 

is measured indirectly using a set of software metrics that 

measures the internal attributes of software systems. These 

metrics should have been validated empirically in previous 

research and can be considered consolidated set of software 

metrics, although there are some variations in how these 

metrics are defined and collected [5]. These metrics also have 

been used in many quality tools, either commercial or open 

source, to track and audit software quality (e.g., Understand for 

Java and ckjm). The software developers and testers can use 

metric tools to audit and track the complex parts of the system 

that need more attention and maintenance. Many metric tools 

can be integrated in development environments (e.g., Atollic 

True STUDIO, Understand for Java, and resource standard 

metrics (RSM)). For example, for the purpose of maintaining 

the internal quality of systems, tools can identify code smells 

such as God Classes in a system. God Classes are such classes 

that are very big and have very large responsibilities, and 

usually code analysts consider it as a source of faults in the 

system. Software metrics in such cases can lead the developers 

to maintain the internal structure of the system throughout 

applying many refactoring operations such as Extract class, 

Extract Superclass, or Extract Interface. Therefore, software 

metrics are becoming widely in tools to assess software 

quality. The metrics have shown skewness to the right in many 

previous researches. There is a belief that software metrics 

follow other distributions rather than the normal distribution 

[6,7]. There are many research papers that discussed the log-

normal distribution as a possible fit for software metrics [8-

10]. In addition, although many research papers have derived 

threshold values of metrics, these derivations were not 

successful for all metrics [11-19]. There are two primary uses 

of metrics: the factor-prediction models and the threshold 

values. Most previous studies on OO metrics offered empirical 

models to predict factors such as error proneness and 

maintenance activities. However, these models did not offer 

threshold values for the metrics and they are not applicable in 

early phases of the software design. Metric threshold values 

can help us identify the problematic classes as we design them. 

With the help of threshold values, a design engineer can 
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monitor the design modules (with the help of tools) during the 

daily engineering work and make quick re-design decisions if 

the metrics of the modules exceed the threshold values. In this 

work, we propose to use data transformation after removing 

redundancy in data to improve the data quality and to reduce 

data skewness. We suggest to validate the effect of redundancy 

removal and transformation on two important applications of 

software metrics in assessing and evaluating software quality: 

threshold derivation and fault classification. Firstly, we remove 

redundancy in order to avoid erroroneous observations leading 

to incorrect statisatics results. And then we derive thresholds 

for a well-known suite of metrics, the Chidamber and Kemerer 

(CK) metrics [20]. CK metrics can be used to analyze software 

quality either by using graphical diagrams or by setting 

threshold values ([19]; Rosenberg et al. [42]). These threshold 

values are usually set based on developers experience or 

derived from research. This research aims to find software 

metrics threshold values from the transformations of metrics 

using the log transformation after removing redundancy in the 

dataset record values and on the basis of these derived 

thresholds fault prone classification of software is conducted. 

In this research, we removed redundancy from the dataset 

record values, then we use the natural log function to transform 

all metrics. The threshold values are then derived for all log 

metrics. We validated our findings by using derived thresholds 

in predicting faulty classes in two scenarios: without removing 

redundancy and after removing redundancies. The results show 

better performance in identifying faulty classes using the 

derived thresholds from the log transformation after removing 

redundancy in the dataset record values than using the derived 

thresholds from the log transformation without removing 

redundancy from the dataset record values.  The remainder of 

the paper is organized as follows. In section 2 we describe the 

research, software metrics in general, dataset collection, model 

used, OO metrics threshold values, and the performance 

evaluation. In Section 3 we present the detailed results analysis 

and observation in our research. Finally in Section 4 we 

conclude our research work and present future enhancements. 

 

II. RESEARCH METHODOLOGY 

 

In this section, we discuss the CK metrics that we have 

considered in our research work. And then we discuss we 

discuss the model shown in Figure I  that we use for removing 

redundancy in dataset record observations, deriving threshold 

values using log transformation and then finally using these 

derived thresholds to predict fault and thus evaluating 

performance. 

 

A. The Chidamber and Kermerer (CK) Metrics 

Chidamber and Kemerer have proposed and validated a suite 

of 21 metrics. But in our work we have considered 6 metrics 

from the CK metric suite that covers six different concepts of 

the internal software quality. These metrics encompasses 

concepts of cohesion, coupling, complexity, inheritance depth, 

number of children, and class responsibility. These metrics are 

defined as follows:  

 Weighted Methods Complexity (WMC): The WMC 

metric is used to count the number of methods in a class. This 

metric is used to cover the concept of complexity. Values of 

WMC are directly proportional to the complexity that is if 

values of WMC are larger than complexity also increases and 

vice-versa. 

 

 Depth of Inheritance Hierarchy (DIT): The DIT 

metric covers the concept of the inheritance depth. This metric 

is used to measure the length of inheritance depth tree from 

root class to the considered class. This metric helps the 

developers to understand all the characteristics that are 

inherited in the considered class like specialization concept in 

database.  

 

 Number of Child Classes (NOC): This NOC metric 

encompasses the concept of number of children of a 

considered class. The NOC metric counts the number of 

descendant of the considered class. This metric is used to 

developers the number of times the considered class has been 

inherited by another class to increase their specialization and 

uses. 

 

 Coupling Between Objects (CBO): The CBO metric 

covers the concept of coupling which shows the strength of 

interconnection among classes in a software system. The 

metric is measured by counting the number of coupling to 

other classes. Couplings are counted for method calls, field 

accesses, inheritance, method arguments, return types, and 

exceptions. It is told in previous papers that values of CBO are 

directly proportional to the faults in a software system that is if 

values of CBO are larger then greater are the chances of the 

fault occurences and vice-versa. 

 

 Response For Class (RFC): The RFC metric covers 

the concept of class responsibility. This RFC metric is used for 

counting the number of responses in the response set for the 

considered class which includes the number of local methods 

and the number of remote methods invoked by other local 

methods. The response set includes classes whose methods in 

class inheritance and methods that can be invoked in other 

objects. Larger the values of RFC, it shows that class has many 

interaction with other classes. 

 

 Lack Of Cohesion Of Methods (LCOM): The LCOM 

metric is the difference number of the pair of methods in a 

class that have similar attributes(A) and number of the pair of 

methods in a class that have no similar attributes(B). If the 

difference is negative then value of LCOM becomes 0. This 

metric covers the concept of the cohesion which means that it 

describes the inter-relatedness of objects among the class. It is 

stated that low cohesion leads to increase in complexity 

resulting in more faults in a class. 

Relationship between fault-proneness in a class and CK metric 

has been studied in many previous research papers. In a survey 

on the effect of metrics on fault proneness, authors found out 

that object-oriented metrics are more successful in finding 

faults than the procedural metrics [22]. The study also found 

out that CK metrics were the most used set of metrics suite to 

predict fault proneness of classes, that is, NOC (53 papers), 

DIT (52 papers), RFC (51 papers), LCOM (50 papers), CBO 

(48 papers), and WMC (44 papers). Three metrics, WMC, 

CBO, and RFC, were always effective in predicting fault 

proneness, while LCOM was not effective and DIT and NOC 

were not very useful. To provide more detailed indicators of 

the effect of the CK metrics on fault proneness, we 

summarized the effect of CK metrics on fault proneness as 

shown in [15]. We summarize these results in Table I. Large 

values of WMC, RFC, and CBO metrics increase the fault 

proneness of classes. Large values of DIT and LCOM metrics 

in most studies also increase the fault proneness of classes. We 

can notice that NOC is less studied and large values of NOC 

metric have a negative impact on fault proneness in three 

studies and a positive impact in only two studies. Although, 
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these results and the recent survey do not suggest studying all 

the CK metrics, we intend to include all CK metrics in this 

study for the comparison with previous findings. 

 

Table.I. Summary of the impact of Chidamber and 

Kemerer metrics on fault proneness as reported in ([15]: 

Table I). 

 
 

B. Dataset Collection 

We have conducted our research work in 8 open source 

projects over their multiple releases. The detailed description 

of each project having multiple releases in stated in Table II. 

These open source project have been developed in JAVA and 

their source code is easily available online. We have collected 

the metrics for 30 releases and in Table II last two columns 

describe the number of releases for the project and the number 

of classes in last release of project. These details have 

collected using open source tool CKJM. The metric dataset for 

the 8 projects is publicly reported by PROMISE data 

repository [23,24]. 

 

C. Redundancy Removal 

In this research, we propose to remove redundancy from 

dataset record values after the dataset is extracted from the 

publicly available PROMISE data repository. The dataset 

obtained from the PROMISE data repository contains 21 CK 

metrics for consideration but we consider only 6 CK relevant 

metrics namely WMC, DIT, NOC, CBO, RFC, LCOM. From 

these 6 considered metrics we remove duplicate set of record 

values from them and only unique set of record values remain 

in the dataset. Redundancy removal avoids the problem of 

over-fitting and scaling problem [2,3]. 

 

Table.2. Systems Under Investigation 

 

 
Figure.1. Model used to remove redundancy, threshold derivation and fault classification and performance evaluation 

 

D. Threshold Derivation 

In this research, we propose to use log transformation to find 

threshold values after removing redundancy from the dataset 

using the mean and standard deviation (two-thirds of data are 

within one standard distribution). We follow the process as 

depicted in Figure 1 to find threshold values for a particular 
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system. In this work, the process is conducted for multi-

releases of 8 projects in Java from various application domains 

and different sizes. The study lays emphasis on the CK-metric 

suite as it was widely reported on many research papers in both 

empirical and theoretical validations as quality predictors. CK 

metrics were used repeatedly to predict software quality factors 

including fault proneness, software reusability, and 

maintenance effort. The process starts by collecting the data 

for the CK metrics for all releases.  

 

The distribution of software metrics data has been analyzed in 

previous researches such as Basili et al. [43]; [25, 26]. All 

studied metrics are found positively skewed to the right 

(Figure 2 shows the histograms of all metrics in Camel version 

1.0). All other project releases also have skewed distribution in 

our data sets. Hence, metrics are not always well characterized 

by their descriptive statistics. Data skewness affects the 

interpretation and usage of software metrics in evaluating 

software systems. Distributions skewed to the right do not 

necessarily follow the normal distribution.  

 

Therefore, a transformation is needed to produce data that are 

less skewed and more close to fit a normal distribution. There 

is a variety of transformations that is usually used to reduce 

skewness in data, but the most used ones are logarithmic 

transformation, the square root transformation, and the inverse 

transformation [27]. The log transformation cannot produce 

transformation for zero values; therefore, a constant should be 

added (e.g., 1 is added in this work). The square root does not 

work for negative values, and if values are continuous between 

0 and 1 as well as above one, then the square root is not 

desirable. The inverse transformation reverses the order of 

software modules, which is not desirable in this work.  

 

In this research, we propose to use the logarithmic 

transformation because it reduces the relative distances 

between data points, which are how this technique reduces 

skewness in metrics data [27]. As an example, we present the 

effect of data transformation in Camel 1.0. Table III shows the 

skewness index before and after reducing redundancy and the 

log transformation for Camel 1.0. We use the skewness index 

to show the differences between before and after 

transformation. Skewness index is a measure of asymmetry in 

data distribution [27]. 

 

 The normal distribution has a skewness of zero, and any 

symmetric data should have a skewness near zero. The 

skewness parameter after the transformation is close to zero 

and therefore closer to a normal distribution for all metrics. 

The NOC metric is the most asymmetric because most of its 

values are zeroes. All metrics data are transformed into a 

natural log, and then the parameters, the mean, and the 

standard deviation are calculated.  

 

 

Table.3. Skewness statistics before and after redundancy removal in camel 1.0 

METRIC Skewness before 

removing redundancy 

and without log 

transformation 

Skewness after 

removing 

redundancy and 

without log 

transformation 

Skewness before 

removing 

redundancy and 

after log 

transformation 

Skewness after 

removing 

redundancy and 

after log 

transformation 

WMC 3.442751 3.416036 0.222655 0.220327 

DIT 0.990612 0.968959 0.199898 0.13434 

NOC 6.284786 6.130979 3.627331 3.566791 

CBO 6.959064 6.857178 0.25098 0.257802 

RFC 2.300273 2.285333 0.42717 0.44778 

LCOM 9.493816 9.264176 0.671351 0.606597 

 

To find a threshold value for a metric using the distribution 

parameters, we use the following calculations: 

 

T’= μ + Ω, T’’= μ-Ω; 

 

Where, μ is the mean and Ω is the standard deviation. 

These are then considered threshold values that can be used to 

detect where more faults could be introduced. However, the 

metrics under investigation are lower bounded, and we propose 

to derive only one threshold value using μ + Ω that identifies 

most complex parts (>threshold value) of the systems under 

investigation. We use the mean and the standard deviation 

together to find the one- third of the data, but because we need 

the data on the right then the identified cases are within the 

upper one-sixth of the data. The results of the T′ are 

representative of the transformed data, and we need to reverse 

the transformation back to produce thresholds on the original 

data. The values of T′ are reversed back using the exponential 

function and denoted T in the following calculation: 

 

T = Exp(T’) 

 

The values of T are produced for all systems (30 releases) 

under investigation for all six metrics. The derived metrics are 

then evaluated to identify the faulty classes, and the results are 

compared with the thresholds that are derived using the 

parameters after removing redundancy with transformation. 
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Figure.2. Histograms for all metrics in Camel 1.0 before transformation. 

 

E. Threshold Performance Evaluation 

Threshold values are vital to help both developers and testers 

in locating which classes need more attention. Derived 

thresholds should be evaluated against one of the software 

quality factors. In this research, we validate the derived 

thresholds to classify whether classes are faulty or not. The 

fault data for the systems under investigation were collected 

from repositories of the projects and summarized by the 

Promise Data Repository [23,24]. The authors have used 

BugInfo to collect the fault data. BugInfo analyzes the history 

of the classes by studying the code repositories (Subversion or 

Concurrent Versions System). If a log contains a fault fix 

description, then the affected classes are marked as faulty. 

BugInfo uses regular expressions to extract fault information. 

When a log description fits to a regular expression, then faults 

count is incremented. Faulty classes are the classes that have 

more than one fault reported in the repository; otherwise, 

classes are marked not faulty. These cases are considered 

actual in the confusion matrices as shown in Table IV. A 

threshold value is used to classify the classes into two groups: 

faulty classes, if a metric value>= T and not faulty classes, if a 

metric value<T. Classes in the first group are considered more 

fault prone, while classes in the second group are otherwise. 

From this classification, we can create a confusion matrix as 

shown in Table IV. The confusion matrix is used to measure 

the performance of using thresholds model in identifying 

actual fault classes using three measures, Recall, Precision, F-

measure and accuracy. These measures are calculated as 

follows: 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , Precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

F − measure =
 β

2 +  1 ∗ precision ∗ recall

𝛽2 ∗ precision + recall
 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

- The term β is used to assign a weight to the Recall. In our 

work, β is equal to 1, and Recall and Precision are equally 

weighed. 

- True positives (TP): faulty classes that are correctly classified 

as such, that is, there are faults fixed in the class (faulty) and 

the metric value exceeds the threshold (faulty). 

- False negatives (FN): faulty classes that are misclassified as 

not faulty, that is, there are faults fixed in the class (faulty), but 

the metric value is less than threshold (not faulty). 
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- True negatives (TN): nonfaulty classes that are correctly 

classified as such, that is, there are no faults fixed in the class 

(not faulty) and the metric value is less than threshold (not 

faulty). 

- False positives (FP): nonfaulty classes that are misclassified 

faulty, that is, there are no faults fixed in the class (not faulty), 

but the metric value exceeds the threshold (faulty). 

 

Table.4. The confusion matrix based on a threshold value 

 
The values of both the Recall and Precision are between 0 and 

1. Values that are close to 1 mean better results. If the value is 

1, then the classifier is ideal and without FN or FP. However, 

the high values of Recall and Precision do not coincide. In 

practice, it is hard to achieve high Recall and Precision, that is, 

high Recall occurs often with low Precision. We use F-

measure, which can be used to assess the overall classification 

performance and combine both Recall and Precision. In 

addition, F-measure is not sensitive to imbalance in data, 

which is the case in studying fault proneness of software, that 

is, few classes are marked fault and the majority is marked not 

faulty. To find the effect of data transformation, we derived 

thresholds from two data sets: before transformation and after 

transformation. Both sets of thresholds are then used to classify 

classes into faulty or not. We then compare the obtained 

classification from transformed data against the results of fault 

classification obtained from original data. The performance of 

fault classification is compared using F-measure. Large values 

of F-measure are desired and should be close to 1. To find the 

significance of the differences in performance (F-measure) 

between the two techniques (before versus after 

transformation), we conducted a pairwise Wilcoxon signed-

rank test at the 95% confidence level. This test is 

nonparametric and does not have assumptions about the 

underlying distribution of the data. The differences are 

significant between the two groups if the statistical test, p-

value, is less than 0.05.  There are significant differences 

among the two thresholds except for DIT. The identified 

thresholds in both techniques for DIT metric are very close to 

three; therefore, no differences are expected in threshold 

applications as well. 

 

III. RESEARCH RESULTS 

 

We conducted the process in Figure 1 to derive thresholds and 

the performance for predicting faults for all data sets for the six 

metrics. 

 

A. Threshold Calculation Result 

We do not provide detailed results for all releases and only the 

mean values of all releases in the 8 systems under 

investigation. We provide details on the releases of only one 

system, Camel, as shown in Table V. In the following, we 

discuss the results for each metric separately. 

 

Table.5. Derived Thresholds for all metrics in Camel 

 
WMC DIT NOC CBO RFC LCOM 

Camel 1.0 13.86996 3.066556 1.039278 16.49223 36.2753 51.40451 

camel 1.2 15.13335 3.089331 1.069965 17.29478 39.64393 61.91362 

camel 1.4 15.57284 3.221924 1.049051 18.62215 41.7294 67.78625 

camel 1.6 15.55869 3.240955 1.04794 18.93689 41.86846 69.24618 

 

 

We have calculated threshold values of 6 CK metrics after 

removing redundancy from datasets for 8 projects. The 

calculated values are shown as follows in Table VI. 

 

 WMC Threshold: WMC indicates the complexity of 

class or interface. It is basically the sum of all complexities of 

the methods in a class. WMC metrics large values are thought 

to be problematic and thus those classes are marked as so. The 

team of developers and testers are then required to go through 

the marked classes to find possible problems in their coding 

and designing. In previous studies various threshold values of 

WMC values have been given but there is still no widespread 

agreement on a particular value. Table VI shows the calculated 

thresholds for the 8 systems under investigations. These are the 

average values for multiple releases of each project. We could 

not notice a common trend in the evolution of the 8 projects for 

consecutive releases but there is no large difference among the 

consecutive releases values. The mean value is approximately 

17. 

 

 DIT thresholds: DIT indicates number of ancestors of 

a class, that is, DIT metric indicates depth of inheritance in a 

class. DIT tells the developer the number of times the 

considered class is inherited by other classes.  Larger values of 

DIT values are considered to have more complex classes, 

which leads to difficulty in understanding, maintaining, and 

reusing of the classes, thus these classes are marked to be 

investigated during testing and maintenance phases of software 

development lifecycle. There have been many studies 

regarding the impact of DIT but there is no given widespread 

acceptable value of DIT. Table VI shows the calculated 

threshold values for DIT for the 8 projects. We can notice that 

DIT does not vary like WMC during evolution of consecutive 

releases of 8 projects, that is, all values are close to three. The 

mean is equal to three. 

 

 NOC thresholds: NOC indicates the descendants of a 

class, that is, NOC tells the number of classes that is inherited 

by considered class during its execution. NOC indicates both 

inheritance and abstraction in classes. Larger values of NOC 

are considered problematic and can be marked as so during 

maintenance and testing phases. Various previous studies have 

tried to reach common agreeable NOC threshold values but 

there is no widespread acceptance for particular value. Table 

VI shows the calculated threshold values for the 8 projects. We 

notice that the all the values of threshold are approximately 

equal to 1. 

 

 CBO thresholds: CBO metric counts the number of 

other classes to which a class is coupled. CBO is used for 
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measuring coupling among classes. High coupling is 

considered to be problematic leading to more complex classes 

making it difficult to understand, increasing testing and 

maintenance efforts and thus these classes are marked in both 

the designing and coding phase. Coupling among classes can 

be reduced by code cleaning and refactoring continuously. 

Various previous studies reported many threshold values for 

CBO. Table VI shows the threshold values. We notice that 

CBO values does not vary much among the 8 projects, and we 

could notice that values have increasing trend for later releases. 

Mean value is approximately 17. 

 

 RFC threshold: RFC is an indicator of the amount of 

responsibility performed by class. The RFC metric counts the 

number of methods in the response set for a class, which 

includes the number of methods in the class and the number of 

remote methods invoked by the methods in the class. Classes 

having large response set are prone to more faults and thus 

needing more maintenance. Such classes require more rigorous 

testing to be sure that all requirements are met by classes 

assigned to them. RFC values show great variation among the 

threshold values and thus there is no common threshold value 

for all systems. Table VI shows the threshold values for the 

RFC metric. Mean value is approximately 51. 

 

 LCOM thresholds: LCOM metric is the number of 

pairs of methods in the class using no attribute in common, 

minus the number of pairs of methods that do. The LCOM is 

set to zero if this difference is negative. Lack of cohesion in 

class has a harmful effect on the quality of design. Low-

cohesive classes show ill-structuring and difficult to maintain 

and test of the classes. Low-cohesive classes affect both 

encapsulation and abstraction levels in class design. To 

increase cohesion in class we can code cleaning and 

refactoring. However, to complete their tasks correctly, the 

developers need to know which level of cohesion is required. 

The LCOM metric was recognized as the most ill-defined 

metric among other CK metrics. Table VI shows the threshold 

values the LCOM metric. We notice that LCOM values show 

great variations among the 8 projects for different releases. The 

mean value is approximately equal to 66. 

 

Table.6. Threshold values for 6 CK Metrics after removing redundancy for 8 projects 

 

wmc 

threshold 

(mean) 

dit 

threshold 

(mean) 

noc  

threshold 

(mean) 

cbo  

threshold 

(mean) 

rfc  

threshold 

(mean) 

lcom  

threshold 

(mean) 

ant 18.12077 3.685256 1.052722 17.18905 61.83121 70.37726 

camel 15.03371 3.154691 1.051558 17.83651 39.87927 62.58764 

ivy 17.85609 2.773193 0.783952 18.697 57.41576 87.72123 

jedit 19.30622 4.343282 0.836688 21.08781 69.70872 80.05485 

log4j 12.53094 2.436433 0.661855 11.94717 42.07368 34.988 

lucene 15.76911 2.555124 1.297417 16.77015 40.68402 28.64256 

synapse 12.38651 2.233747 0.776952 20.94617 54.74754 34.56419 

xerces 22.47552 3.030955 0.993855 12.89372 45.6356 125.7596 

 

An important concept of object oriented systems is inheritance. 

This concept of inheritance helps developers of software to 

reuse existing system components. It is suggested to favour 

composition as a means of reusing existing system components 

in the object-oriented designing of system more than the 

concept of inheritance [28,29]. If software developers have no 

intention to change the design of inherited classes, then the 

exposure of design of super-classes takes place in the 

subclasses, which may result in making subclasses more fault-

prone. The inheritance of a program is measured using two CK 

metrics namely, DIT and NOC. In this research, we have 

identified threshold values for these metrics, DIT ≡ 3 and NOC 

≡ 1. However, the data values in dataset considered in this 

research show that nearly all the classes in dataset have value 

of zero for the NOC metric, therefore mean value of NOC 

metric is very small in our observation result. The selected 

threshold for NOC may not be meaningful, because most 

classes have NOC= 0. Therefore NOC>=1 separates between 

parent and leaf classes. On the other hand, the selected 

threshold for DIT is also small. However, there are many 

research papers that published similar thresholds for DIT (Daly 

et al.[30-32]), and our results support those previous findings. 

The low variability in inheritance metrics (DIT and NOC) has 

been observed in many previous research papers. A large 

number of classes have NOC= 0. Table I also shows that NOC 

and DIT have no significant relationship with fault proneness 

in many research papers. However, the CK metrics are used as 

a suite to measure different aspects of software design and 

code, and inheritance metrics are still needed to fully measure 

a software system. The work of McCabe and Rosenberg has 

not suggested any thresholds for the NOC (Rosenberg et al. 

1999)[21]. In addition, Shatnawi et al. [14]could not report a 

threshold for NOC using Receiver Operating Characteristic 

(ROC) analysis[14]. 

B. Performance Calculation Result 

We do not provide detailed results for all releases and only the 

mean values of all releases in the 8 systems under 

investigation. We provide details on the releases of only one 

system, Camel.  In the following, we discuss the results for 

each metric separately. 
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 Precision Calculation: 

Table.7.Values of precision before and after removing 

redundancy and after log transformation for camel for 

WMC 

 WMC before 

removing 

redundancy 

WMC after 

removing 

redundancy 

camel 1.0 0.101695 0.105263 

camel 1.2 0.455357 0.5 

camel 1.4 0.335404 0.368852 

camel 1.6 0.329545 0.351563 

 

Table.8.Values of precision before and after removing 

redundancy and after log transformation for camel for DIT 

 DIT before 

removing 

redundancy 

DIT after 

removing 

redundancy 

camel 1.0 0.029412 0.029412 

camel 1.2 0.25 0.25 

camel 1.4 0.222222 0.222222 

camel 1.6 0.173554 0.173554 

 

Table.9. Values of precision before and after removing 

redundancy and after log transformation for camel for 

NOC 

 NOC before 

removing 

redundancy 

NOC after 

removing 

redundancy 

camel 1.0 0.097561 0.071429 

camel 1.2 0.452055 0.45283 

camel 1.4 0.25 0.25 

camel 1.6 0.333333 0.352113 

 

Table.10.Values of precision before and after removing 

redundancy and after log transformation for camel for 

CBO 

 CBO before 

removing 

redundancy 

CBO  after 

removing 

redundancy 

camel 1.0 0.184211 0.176471 

camel 1.2 0.423077 0.442857 

camel 1.4 0.261905 0.267241 

camel 1.6 0.330827 0.364407 

 

Table.11.Values of precision before and after removing 

redundancy and after log transformation for camel for 

RFC 

 RFC before 

removing 

redundancy 

RFC after 

removing 

redundancy 

camel 1.0 0.085106 0.073171 

camel 1.2 0.443299 0.460674 

camel 1.4 0.321918 0.326241 

camel 1.6 0.318182 0.323741 

 

Table.12. Values of precision before and after removing 

redundancy and after log transformation for camel for 

LCOM 

 LCOM before 

removing 

redundancy 

LCOM after 

removing 

redundancy 

camel 1.0 0.125 0.125 

camel 1.2 0.472222 0.5 

camel 1.4 0.343373 0.340278 

camel 1.6 0.320225 0.335484 

Table.13. Values of precision(mean) before and after removing redundancy and after log transformation for 8 projects 

 
 

 Recall Calculation: 

Table.14. Values of Recall before and after removing 

redundancy and after log transformation for camel for 

WMC 

 WMC before 

removing 

redundancy 

WMC after 

removing 

redundancy 

camel 1.0 
0.461538 0.307692 

camel 1.2 
0.236111 0.189815 

camel 1.4 
0.372414 0.310345 

camel 1.6 
0.308511 0.239362 

Table.15. Values of recall before and after removing 

redundancy and after log transformation for camel for DIT 

 DIT before 

removing 

redundancy 

DIT after removing 

redundancy 

camel 1.0 

0.076923 0.076923 

camel 1.2 

0.074074 0.074074 

camel 1.4 

0.165517 0.165517 

camel 1.6 

0.111702 0.111702 
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Table.16. Values of recall before and after removing 

redundancy and after log transformation for camel for 

NOC 

 NOC before 

removing 

redundancy 

NOC after removing 

redundancy 

camel 1.0 0.307692 0.153846 

camel 1.2 0.152778 0.111111 

camel 1.4 0.186207 0.110345 

camel 1.6 0.207447 0.132979 

 

Table.17. Values of recall before and after removing 

redundancy and after log transformation for camel for 

CBO 

 CBO before 

removing 

redundancy 

CBO  after 

removing 

redundancy 

camel 1.0 0.538462 0.461538 

camel 1.2 0.152778 0.143519 

camel 1.4 0.227586 0.213793 

camel 1.6 0.234043 0.228723 

Table.18. Values of recall before and after removing 

redundancy and after log transformation for camel for 

RFC 

 RFC before 

removing 

redundancy 

RFC after 

removing 

redundancy 

camel 1.0 0.307692 0.230769 

camel 1.2 0.199074 0.189815 

camel 1.4 0.324138 0.317241 

camel 1.6 0.260638 0.239362 

 

Table.19. Values of recall before and after removing 

redundancy and after log transformation for camel for 

LCOM 

 LCOM before 

removing 

redundancy 

LCOM after 

removing 

redundancy 

camel 1.0 0.615385 0.538462 

camel 1.2 0.236111 0.208333 

camel 1.4 0.393103 0.337931 

camel 1.6 0.303191 0.276596 

 

Table .20. Values of recall(mean) before and after removing redundancy and after log transformation for 8 projects 

 
 

 F-Measure Calculation: 

 

Table.21. Values of F-measure before and after removing 

redundancy and after log transformation for camel for 

WMC 

 WMC before 

removing 

redundancy 

WMC after 

removing 

redundancy 

camel 1.0 
0.166667 0.156863 

camel 1.2 
0.310976 0.275168 

camel 1.4 
0.352941 0.337079 

camel 1.6 
0.318681 0.28481 

 

Table.22. Values of F-measure before and after removing 

redundancy and after log transformation for camel for DIT 

 

 DIT before 

removing 

redundancy 

DIT after 

removing 

redundancy 

camel 1.0 0.042553 0.042553 

camel 1.2 0.114286 0.114286 

camel 1.4 0.189723 0.189723 

camel 1.6 0.135922 0.135922 

Table.23. Values of F-measure before and after removing 

redundancy and after log transformation for camel for 

NOC 

 NOC before 

removing 

redundancy 

NOC after 

removing 

redundancy 

camel 1.0 

0.148148 0.097561 

camel 1.2 

0.228374 0.178439 

camel 1.4 

0.213439 0.15311 

camel 1.6 

0.255738 0.19305 

 

Table.24. Values of F-measure before and after removing 

redundancy and after log transformation for camel for 

CBO 

 CBO before 

removing 

redundancy 

CBO  after 

removing 

redundancy 

camel 1.0 
0.27451 0.255319 

camel 1.2 
0.22449 0.216783 

camel 1.4 
0.243542 0.237548 

camel 1.6 
0.274143 0.281046 
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Table.25. Values of F-measure before and after removing 

redundancy and after log transformation for camel for 

RFC 

 RFC before 

removing 

redundancy 

RFC after 

removing 

redundancy 

camel 1.0 0.133333 0.111111 

camel 1.2 0.27476 0.268852 

camel 1.4 0.323024 0.321678 

camel 1.6 0.28655 0.275229 

 

Table.26. Values of F-measure before and after removing 

redundancy and after log transformation for camel for 

LCOM 

 LCOM before 

removing 

redundancy 

LCOM after 

removing 

redundancy 

camel 1.0 0.207792 0.202899 

camel 1.2 0.314815 0.294118 

camel 1.4 0.366559 0.3391 

camel 1.6 0.311475 0.303207 

Table.27. Values of F-measure (mean) before and after removing redundancy and after log transformation for 8 projects 

 
 

 Accuracy Calculation: 

 

Table.28. Values of Accuracy before and after removing 

redundancy and after log transformation for camel for 

WMC 

 WMC before 

removing 

redundancy 

WMC after 

removing 

redundancy 

camel 1.0 82.30% 87.32% 

camel 1.2 62.83% 64.47% 

camel 1.4 77.29% 79.70% 

camel 1.6 74.30% 76.58% 

 

 
Figure.3. Comparison of accuracy before and after 

removing redundancy and after log transformation for 

camel for WMC 

 

Table.29. Values of Accuracy before and after removing 

redundancy and after log transformation for camel for DIT 

 DIT before 

removing 

redundancy 

DIT after 

removing 

redundancy 

camel 1.0 86.73% 86.73% 

camel 1.2 59.21% 59.21% 

camel 1.4 76.49% 76.49% 

camel 1.6 72.33% 72.33% 

 
Figure.4. Comparison of accuracy before and after 

removing redundancy and after log transformation for 

camel for DIT 

 

Table.30. Values of Accuracy before and after removing 

redundancy and after log transformation for camel for 

NOC 

 NOC before 

removing 

redundancy 

NOC after 

removing 

redundancy 

camel 1.0 86.43% 89.09% 

camel 1.2 63.32% 63.65% 

camel 1.4 77.18% 79.70% 

camel 1.6 76.48% 78.34% 

 

 
Figure.5. Comparison of accuracy before and after 

removing redundancy and after log transformation for 

camel for NOC 
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Table.31. Values of Accuracy before and after removing 

redundancy and after log transformation for camel for 

CBO 

 CBO before 

removing 

redundancy 

CBO  after 

removing 

redundancy 

camel 1.0 89.09% 89.68% 

camel 1.2 62.50% 63.16% 

camel 1.4 76.49% 77.18% 

camel 1.6 75.85% 77.20% 

 

 
Figure.6. Comparison of accuracy before and after 

removing redundancy and after log transformation for 

camel for CBO 

 

Table.32. Values of Accuracy before and after removing 

redundancy and after log transformation for camel for 

RFC 

 RFC before 

removing 

redundancy 

RFC after 

removing 

redundancy 

camel 1.0 
84.66% 85.84% 

camel 1.2 
62.66% 63.32% 

camel 1.4 
77.41% 77.75% 

camel 1.6 
74.72% 75.44% 

 

 

 
Figure.7. Comparison of accuracy before and after 

removing redundancy and after log transformation for 

camel for RFC 

 

Table.33. Values of Accuracy before and after removing 

redundancy and after log transformation for camel for 

LCOM 

 LCOM before 

removing 

redundancy 

LCOM after 

removing 

redundancy 

camel 1.0 82.01% 83.78% 

camel 1.2 63.49% 64.47% 

camel 1.4 77.41% 78.10% 

camel 1.6 73.89% 75.23% 

 
Figure.8. Comparison of accuracy before and after 

removing redundancy and after log transformation for 

camel for LCOM 

 

Table.34. Values of Accuracy (mean) before and after removing redundancy and after log transformation for 8 projects
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Figure. 9. Comparison of accuracy before and after removing redundancy and after log transformation for 8 projects 

 

C. Observation  

There were several values of threshold given based on 

previous research papers as shown in Table XXXV [44-

45,25,34-41,11-17].  

In this thesis we have observed several threshold values for 6 

CK metrics namely, WMC, DIT, NOC, CBO, RFC and LCOM 

for all 8 Projects (30 releases) as shown in TABLE XXXVI. 

 

Table.35. Summary of previously identified thresholds 
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Table.36.Threshold obtained after removing redundancy 

and after log transformation 

Metric Threshold values after removing 

redundancy after log 

transformation 

WMC 17 

DIT 3 

NOC 1 

CBO 17 

RFC 51 

LCOM 65 

Based on these threshold values derived after removing 

redundancy from record values of datasets and log 

transformation, we have performed fault classification for each 

metric and thus obtained performance of fault prediction for 

each metric. We have observed accuracy of predicting fault 

after removing redundancy and after log transformation for 

each metric is better than accuracy of predicting fault before 

removing redundancy and after log transformation for each 

metric for all 8 projects(30 releases). 

 

Table.37.  Accuracy of predicting fault after removing 

redundancy and after log transformation and before 

removing redundancy and after log transformation 

METRIC Accuracy after 

removing 

redundancy and 

after log 

transformation 

Accuracy before 

removing 

redundancy and 

after log 

transformation 

WMC 70.50% 69.80% 

DIT 61.82% 61.57% 

NOC 66.61% 66.38% 

CBO 69.68% 69.48% 

RFC 71.02% 70.69% 

LCOM 69.61% 69.05% 

 

IV. CONCLUSION AND FUTURE ENHANCEMENT 

 

Finding where quality can be improved is a vital issue in 

software quality and is one of the major uses of software 

metrics. Appropriate metric tools and analysis techniques are 

needed to identify the classes that are more fault-prone during 

both development and testing phases. Software practitioners 

can analyze software quality using metrics by setting threshold 

values to mark the most complex classes. However, the 

currently identified thresholds do not account for the skewness 

in data distribution. In this work, we proposed to remove 

redundancy and to use data transformation to improve two 

techniques of software quality assessment: derive threshold 

values and fault classification using the derived metrics. Data 

distribution has been used before to identify thresholds values 

using the mean and the standard deviation. However, most 

previous works have not considered for removing redundancy 

in dataset that ultimately result in over-fitting and scaling 

problems. So we use redundancy removal technique in dataset 

to reduce problem of over-fitting and scaling. along with that 

most previous works have not considered the effect of data 

transformation on quality assessment. We used the log 

transformation to reduce the effect of skewness in data. The 

results were attained from studying 8 different Java projects 

from the open-source field. To evaluate the effectiveness of the 

results obtained after transformation, we used the transformed 

metrics to derive thresholds. The derived thresholds were used 

to classify classes into either faulty (<thresholds) or not faulty 

otherwise, and we repeated the classification using the 

thresholds that were derived from metrics before the 

transformation. The statistical comparison showed better fault 

classification after redundancy removal and log-transformed 

data than otherwise. We suggest to remove redundancy and to 

use data transformation on software metrics before assessing 

software quality. 

 

In the future, we intend to use complete suite of CK metric 

suite to derive threshold and perform fault classification and 

thus evaluate their performance and compare them against 

previous studies. In future, we plan to consider more factors 

that affect the derivation of consistent and practical thresholds. 

In addition, we plan to validate the effect of using thresholds 

on development and maintenance activities such as code 

refactoring. And in addition the researcher plans to expand this 

study to more diverse datasets. 
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