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Abstract: 

In this paper is presented to study conjugate effects of viscous dissipation and pressure work on MHD natural convection flow along a 

vertical flat plate with heat conduction and power law variation of surface temperature. Viscous dissipation and pressure work effects 

on natural convection flows with heat generation are considered in this investigation. With a goal to attain similarity solutions of the 

problem, the developed equations are made dimensionless by using suitable transformations. The non-dimensional equations are then 

transformed into non-similar forms by introducing non- similarity transformations. The resulting non-similar equations together with 

their corresponding boundary conditions based on conduction and convection are solved numerically by using the shooting method of 

Nachtsheim-swigert iteration technique and finite difference method together with Keller box Scheme. Numerically calculated 

velocity profiles and temperature profiles, skin friction and the rate of heat transfer coefficient are shown on graphs for different 

values of the parameters entering into the problem. 
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I. INTRODUCTION 

 

The Problem of natural convection flow along a vertical 

isothermal plate is a classical problem of fluid mechanics that 

has been solved with the similarity method near about 70 years 

ago. Ackroyd [1] was the first who introduced the viscous 

dissipation and the pressure work in the energy equation. He 

proved that, for this problem, the pressure work effect is more 

important than that of viscous dissipation. Gebhart, [2] was the 

first who studied the problem of laminar natural convection flow 

along a vertical heated plate taking into account the viscous 

dissipation. Also, he found that the non-dimensional parameter 

pClg / (g= acceleration due to gravity,  is the coefficient 

of thermal expansion, l = length scale of the problem, pC  

specific heat under constant pressure) determined the influence 

of viscous dissipation and it has been called the dissipation 

number. Gebhart and Mollendorf [3] have shown that the 

problem of natural convection flow over a vertical plate with 

viscous dissipation admits similarity solution only when the 

plate temperature varies in exponential law. Effect of pressure 

stress work and viscous dissipation on MHD and Joule heating 

natural convection flow along a vertical flat plate and over a 

sphere have been investigated by Alam et al. [4, 5]. Alim et 

al.[6] studied combined effect of viscous dissipation and Joule 

heating on the coupling of conduction and free convection along 

a vertical flat plate. Joshi and Gebhart [7] treated with the 

perturbation method, the problem of natural convection over a 

vertical isothermal plate taking into account both the viscous 

dissipation and the pressure work in the energy equation using 

two non-dimensional numbers. The effect of axial heat 

conduction in a vertical flat plate on free convection heat transfer 

are studied by Miyamoto et al.[9]. The coupling of conduction 

with laminar natural convection along a flat plate is studied by 

Pozzi, and Lupo [9]. Emad et al. [10] investigated viscous 

dissipation and Joule heating effects on MHD-free convection 

flow from a vertical plate with power-law variation in surface 

temperature in the presence of Hall and ion-slip currents. But our 

investigation the effects of stress work and heat generation on 

natural convection flow along a vertical plate with power law 

variation with uniform surface temperature. 

 

Nomenclature 
CP Specific heat at constant pressure. 

g Acceleration due to gravity. 

Gr The local Grashof number. 

k Thermal conductivity of the fluid. 

P Pressure of the fluid. 

xP  Fluid pressure along x-direction. 

Pr Prandtl number. 

Q Heat generation parameter. 

Qo Heat generation coefficient 

qx Heat flux 

T Temperature of the fluid. 

wT  Wall temperature 

T  Ambient temperature.  

u  
Velocity component in the x -   

direction. 
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v  Velocity component in the y -direction. 

x  Measured from the leading edge. 

y  Distance normal to the surface. 

y The pseudo-similarity variable. 

x
 

The similarity variable. 

Greek symbols 

 The thermal diffusivity. 

 Co-efficient of volume expansion 

 Kinematic viscosity 

 Viscosity of the fluid 
  Dimensionless temperature 

 
Density of the fluid inside the boundary 

layer. 

 Stream function 

  The electric conductivity. 

 

II. FORMULATION OF THE PROBLEM 

 

Consider the laminar free convection flow along a vertical p 

placed in a calm environment with u  and v  denoting 

respectively the velocity components in the x and y  direction, 

where x  is vertically upwards and y  is the coordinate 

perpendicular to x  For steady, two-dimensional flow of the 

boundary layer continuity equation, momentum equation and 

energy equation, including viscous dissipation, pressure work 

and heat generation term are given below. 

 
 Figure.1. Physical Co-ordinate system 

 For steady, two-dimensional flow of the boundary layer 

continuity equation, momentum equation and energy equation, 

including viscous dissipation, pressure work and heat generation 

term are given below. 
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(3) 

 Where 

pC

k


   is the thermal diffusivity. 

The temperature of quiescent ambient fluid 


T  at large values 

of y is taken to be constant.  

 Where 
wT  is the temperature on the wall,  T  is the fluid 

temperature,   is the kinematics velocity,   is the fluid 

thermal expansion coefficient, 0Q is the heat generated 

coefficient, pC  is the specific heat at constant pressure,   is 

the fluid density and P is the pressure. The last three terms in the 

energy equation, the viscous dissipation, the pressure work and 

heat generation are respectively.  

Equations (1)-(3) are to solved subject to the boundary 

conditions 

 

wTTvu  ,0  on  0y  

 TTUu ,  as  y  

wTTUu  ,  at  0x  

 

(4) 

 

  where U  is the free stream velocity. 
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(6) 

Where )( TTw  is the downstream temperature difference 

(along the x-axis) which would result without the inclusion of 

the viscous dissipation and hydrostatic pressure effects that are 

both )(x  and )(x  are zero. xGr  is related to the actual 

physical Grashof number )0(xx GrGr  . 

 

III. TRANSFORMATION OF THE GOVERNING 

EQUATIONS 
 

Now using the similarity variable and the stream function of the 

following form  
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Also the energy equation 
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The last two terms in the energy equation (8) are the pressure 

work and viscous dissipation effect respectively. Here we 

consider the power law 
nn NxxNT   surface (at y =0) 

temperature distributions. Considering for similarity solutions, 

we use the following transformations: 

2

34
1

4

1

,
4

11
)(,

4

1
4)(



 n

xxx

xnxg
GrGr

x
xbGrxc 

















  

4
1

4
1

4

13
])

4

1
(4[ 








 xxx Gr

x

n
Gr

dx

d
c , 

4
1

2
)

4

1
(

4

1
xx Gr

x

n
b


  

Now T
x

n
nNxNx

dx

d
T x  1)()( 

 

The for the momentum equation 

0)()(')1(2

)('')()3()('''

2 



yyfn

yfyfnyf


 

 

(9) 

 

And also energy equation 
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Therefore, f (y) and )(y are functions of rpy, and 
nx  for 

the power law case. To retain both the viscous dissipation and 

hydrostatic pressure effects to the first order,  x  and  x  

are chosen as 
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 , Q is the dimensionless heat 

generation parameter. Equations (10) and (12) are numerically 

integrated in the vertical surface case, with the boundary 

conditions 
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IV.  NUMERICAL METHODS 

 

The theoretical treatment of Heat Generation flows or any other 

flows both in horizontal or incline planes have so far been made 

mostly analytically and applying perturbation methods. In some 

cases the asymptotic method has been applied. However, our 

solutions would be based mainly on numerical methods. For this 

purpose the shooting method of Nachtsheim-Swigert iteration 

technique and finite difference method together with Keller box 

Scheme will be used for problems for which similarity solutions 

of ordinary differential equations are sought. In order to obtain 

non-similar solutions to partial differential the shooting method 

of Nachtsheim-swigert iteration technique together with Keller 

box Scheme will be used for these problems for which similarity 

solutions of ordinary differential equations are sought. 

 

V. RESULTS AND DISCUSSION 

 

The system of non-linear ordinary differential equations (9) and 

(11) together with the boundary condition (12) have been solved 

numerically by employing shooting method of Nachtsheim-

swigert iteration technique and finite difference method together 

with Keller-box elimination technique. With the flow parameters 

Q,   ,   and Pr, the results are displayed in figures (2) to 

figures (8) for predicting velocity profiles, temperature profiles, 

skin friction and rate of heat transfer coefficient. 

From figure 2(a) it depicts that the velocity distribution increases 

slightly as the pressure work parameter   increases in the 

region y  [0, 9] but near the surface of the plate, velocity 

increases and becomes maximum and then decreases and at a 

certain point velocity profiles coincide and finally approaches to 

zero. The maximum values of the velocity are recorded to be 

0.43056, 0.44332, 0.47589 and 0.53463 for   = 0.50, 1.00, 1.50 

and 2.00 respectively which occur at y  = 1.17520 for first, 

second and third maximum values and at y  = 1.23788 for last 

maximum values. Here we see that the velocity increases by 

24.17 % as   increases from 0.50 to 2.00. From figure 2(b), it is 

seen that when the values of pressure work parameter   

increases in the region y  [0, 9], the temperature distribution 

also increases. But near the surface of the plate temperature 

profiles are maximum and then decreases away from the surface 

and finally take asymptotic value. 
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Variation of 2(a) velocity and 2(b) temperature profiles against 

y  for  with Q = 0.50,   = 0.70, n = 1.00 and Pr = 0.72. 

Figure 3(a) and figure 3(b) display results for the velocity and 

temperature profiles, for different small values of viscous 

dissipation parameter   (= 0.20, 0.40, 0.60, 0.80, 1.00) plotted 

against y  at Pr = 0.72, Q = 0.50,  = 0.70 and n = 1.00.  From 

figure 3(a), it is seen that an increase in the viscous dissipation 

parameter   is associated with a considerable increase in 

velocity profiles but near the surface of the plate, the velocity 

increases and become maximum and then decreases and finally 

approaches to zero asymptotically. The maximum values of the 

velocity are 0.3735, 0.3671, 0.3609 and 0.3568 for   = 0.20, 

0.40, 0.60, 0.80, 1.00 respectively which occur at y = 1.3693 for 

all maximum values. Here we see that the velocity increases by 

14.68% as   increases from 0.20 to 1.00. A similar situation is 

also observed from figure 3(b) in the case of temperature field. 

Here it is seen that the local maximum values of the temperature 

profiles are 0.9630, 0.9416, 0.9216, 0.9031 for   = 0.20, 0.40, 

0.60, 0.80, 1.00 respectively and each of which occurs at the 

surface. Thus the temperature profiles increase by 6.63% as   

increases from 0.20 to 1.00. 
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Variation of 3(a) velocity and 3(b) temperature profiles against 

y  for   with Q = 0.30, Pr = 0.72, n = 1.00 and  = 0.60. 
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Variation of 4(a) velocity and 4(b) temperature profiles against 

y  for Pr with Q = 0.40,   = 0.20, n = 1.00 and  = 0.80. 

Figure 4 (a) depicts the velocity profiles for different values of 

the Prandtl’s number Pr (= 1.00, 1.74, 2.00, 3.00) with the others 

controlling parameters   = 0.20, Q = 0.40, n = 1.00 and   = 

0.80.  Corresponding distribution of the temperature profile 

 yx,  in the fluids is shown in figure 4(b). From figure 4(a), 

it can be seen that if the Prandtl’s number increases the velocity 

of the fluid decreases. On the other hand, from figure 4(b) it is 

observed that the temperature profiles decrease within the 

boundary layer due to increase of the Prandtl’s number Pr. 
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Variation of 5(a) velocity and 5(b) temperature  profiles against 

y  for  Q with  Pr = 0.72,   = 0.40, n = 1.00 and  = 0.30. 

Figure 5(a) and figure 5(b) deal with the effect of the heat 

generation parameter Q = 0.00, 0.20, 0.40, 0.50 for different 

values of the controlling parameters Pr = 0.72,    = 0.40, n = 

1.00 and   = 0.30 on the velocity profile  yxf ,  and the 

temperature profiles  yx, . From figure 5(a), it is revealed 

that the velocity profile  yxf ,  increases slightly with the 

increase of the heating generation parameter Q which indicates 

that heating generation parameter accelerates the fluid motion. 

Small increment is shown from figure 5(b) on the temperature 

profile  yx,  for increasing values of Q. 

Figure 6(a) and figure 6(b), represent the effects for different 

values of pressure work parameter   for viscous dissipation 

parameter   = 0.50, n = 1.00, heat generation parameter Q = 

0.30 and Prandtl number Pr = 0.72 on the reduced skin friction 
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coefficient  0,xf   and rate of heat transfer  0,x . The 

skin friction coefficient  0,xf   and heat transfer coefficient 
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Variation of 6(a) skin friction and 6(b) heat transfer coefficient 

against   for  with Q = 0.30,   = 0.50, n = 1.00 and Pr = 0.72. 
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Variation of 7(a) skin friction and 7(b) heat transfer coefficient 

against x  for Pr with  = 0.20,   = 0.80, n = 1.00 and   = 

1.00. 

 0,x  increase with the increasing values of pressure work 

parameter  

x

S
k
in

fr
ic

ti
o

n

0 0.5 1 1.5 2
1

1.01

1.02

1.03

1.04

1.05

1.06

  

  

  

  

  

(a)

Q = 0.30, Pr = 0.72,
n = 1.0,  

 

x

R
at

e
o
f

h
ea

t
tr

an
sf

er

0 0.5 1 1.5 2
0.7

0.75

0.8

0.85

0.9

0.95

1

  

  

  

  

   (b)

Q = 0.30, Pr = 0.72,
n = 1.0,   

 
Variation of 8(a) skin friction and 8(b) heat transfer coefficient 

against x  for   with  Q = 0.50,   = 0.60, n = 1.00 and Pr = 

0.72. 

In figure 7(a), the skin friction coefficient  0,xf   and figure 

7(b), the rate of heat transfer  0,x  are shown graphically for 

different values of the Prandtl number Pr (=1.00, 1.74, 2.00, 

3.00) when other values of the controlling parameters are   = 

0.30, Q = 0.40, n = 1.00 and   = 1.00. Here skin friction is 

increase with the increasing values of Pr, but reverse way for 

heat transfer coefficient  0,x . 

In figure 8(a) and 8(b) it is seen that the skin friction coefficient 

 0,xf   and the rate of heat transfer  0,x  both are 

increases with the increasing values of the viscous dissipation 

parameter  when other values of the controlling parameters are 

  = 0.70, Q = 0.50, n = 1.00 and Pr = 0.72. 
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Variation of 9(a) skin friction and 9(b) heattransfer 

coefficient against x  for Q  with    = 0.30,   = 0.80, n = 

1.00 and Pr = 0.72. 

In figure 9(a) and 9(b) it is seen that the skin friction coefficient 

 0,xf   and  the rate of heat transfer  0,x  both are 

increases with the the increasing values of  the heat generation 

parameter  when other values of the controlling parameters are 

  = 0.80,  = 0.30, n = 1.00 and Pr = 0.72. 

 

VI. CONCLUSIONS 

 

From the present investigation, the following conclusions may 

be drawn: 

 

• Both the skin friction coefficient and the velocity 

profile increase for increasing values of the viscous dissipation 

parameter   and the pressure works parameter .  

• Increased values of the viscous dissipation parameter   

leads to increase the rate of heat transfer coefficient as well as 

the temperature distribution. 

• Increased values of the pressure work parameter   leads 

to increase the rate of heat transfer coefficient as well as the 

temperature distribution. 

• It has been observed that the skin friction coefficient, 

the rate of heat transfer coefficient, the temperature profile and 

the velocity profile decrease over the whole boundary layer with 

the increase of the Prandtl number Pr. 

• The effect of heat generation parameter   Q is to 

increase the velocity distribution over the whole boundary layer 

increase and same case happens for temperature distributions. 
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